首页> 外文OA文献 >Langevin Dynamics Simulations of Polymer Translocation through Nanopores
【2h】

Langevin Dynamics Simulations of Polymer Translocation through Nanopores

机译:Langevin动力学模拟的聚合物通过纳米孔易位。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate the dynamics of polymer translocation through a nanopore using two-dimensional Langevin dynamics simulations. In the absence of an external driving force, we consider a polymer which is initially placed in the middle of the pore and study the escape time τe required for the polymer to completely exit the pore on either side. The distribution of the escape times is wide and has a long tail. We find that τe scales with the chain length N as τe∼N1+2ν, where ν is the Flory exponent. For driven translocation, we concentrate on the influence of the friction coefficient ξ, the driving force E, and the length of the chain N on the translocation time τ, which is defined as the time duration between the first monomer entering the pore and the last monomer leaving the pore. For strong driving forces, the distribution of translocation times is symmetric and narrow without a long tail and τ∼E−1. The influence of ξ depends on the ratio between the driving and frictional forces. For intermediate ξ, we find a crossover scaling for τ with N from τ∼N2ν for relatively short chains to τ∼N1+ν for longer chains. However, for higher ξ, only τ∼N1+ν is observed even for short chains, and there is no crossover behavior. This result can be explained by the fact that increasing ξ increases the Rouse relaxation time of the chain, in which case even relatively short chains have no time to relax during translocation. Our results are in good agreement with previous simulations based on the fluctuating bond lattice model of polymers at intermediate friction values, but reveal additional features of dependency on friction.
机译:我们使用二维Langevin动力学模拟研究通过纳米孔的聚合物移位的动力学。在没有外部驱动力的情况下,我们考虑一种最初放置在孔隙中间的聚合物,并研究聚合物完全从任一侧离开孔隙所需的逸出时间τe。逃生时间的分布范围广,尾巴较长。我们发现,τe随链长N的变化为τe〜N1 +2ν,其中ν是弗洛里指数。对于驱动移位,我们集中于摩擦系数ξ,驱动力E和链长N对移位时间τ的影响,移位时间τ定义为第一个单体进入孔与最后一个进入孔之间的持续时间。单体离开孔。对于强大的驱动力,移位时间的分布是对称且狭窄的,没有长尾巴和τ〜E-1。 ξ的影响取决于驱动力与摩擦力之比。对于中间ξ,我们发现τ与N的交叉缩放比例从相对短的链的τ〜N2ν到较长链的τ〜N1 +ν。然而,对于较高的ξ,即使对于短链,也仅观察到τ〜N1 +ν,并且没有交叉行为。该结果可以通过增加ξ来增加链的Rouse弛豫时间这一事实来解释,在这种情况下,即使相对较短的链也没有时间在移位过程中弛豫。我们的结果与以前的基于中间摩擦值下聚合物的波动键晶格模型的模拟结果非常吻合,但揭示了依赖摩擦的其他特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号