首页> 外文OA文献 >Methods and applications for ontology-based recommender systems
【2h】

Methods and applications for ontology-based recommender systems

机译:基于本体的推荐系统的方法和应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recommender systems are a specific type of information filtering systems used to identify a set of objects that are relevant to a user. Instead of a user actively searching for information, recommender systems provide advice to users about objects they might wish to examine. Content-based recommender systems deal with problems related to analyzing the content, making heterogeneous content interoperable, and retrieving relevant content for the user. This thesis explores ontology-based methods to reduce these problems and to evaluate the applicability of the methods in recommender systems. First, the content analysis is improved by developing an automatic annotation method that produces structured ontology-based annotations from text. Second, an event-based method is developed to enable interoperability of heterogeneous content representations. Third, methods for semantic content retrieval are developed to determine relevant objects for the user. The methods are implemented as part of recommender systems in two cultural heritage information systems: CULTURESAMPO and SMARTMUSEUM. The performance of the methods were evaluated through user studies. The results can be divided into five parts. First, the results show improvement in automatic content analysis compared to state of the art methods and achieve performance close to human annotators. Second, the results show that the event-based method developed is suitable for bridging heterogeneous content representations. Third, the retrieval methods show accurate performance compared to user opinions. Fourth, semantic distance measures are compared to study the best query expansion strategy. Finally, practical solutions are developed to enable user profiling and result clustering. The results show that ontology-based methods enable interoperability of heterogeneous knowledge representations and result in accurate recommendations. The deployment of the methods to practical recommender systems show applicability of the results in real life settings.
机译:推荐系统是一种特定类型的信息过滤系统,用于标识与用户相关的一组对象。推荐系统代替用户积极地搜索信息,而是向用户提供有关他们可能希望检查的对象的建议。基于内容的推荐器系统处理与以下内容有关的问题:分析内容,使异构内容可互操作以及为用户检索相关内容。本文探索了基于本体的方法来减少这些问题并评估该方法在推荐系统中的适用性。首先,通过开发一种自动注释方法来改进内容分析,该方法可以从文本中生成基于结构化本体的注释。其次,开发了一种基于事件的方法以实现异构内容表示的互操作性。第三,开发了语义内容检索方法来确定用户的相关对象。这些方法在两个文化遗产信息系统中作为推荐系统的一部分实施:CULTURESAMPO和SMARTMUSEUM。通过用户研究评估了方法的性能。结果可分为五个部分。首先,结果表明,与现有方法相比,自动内容分析得到了改进,并获得了与人类注释者接近的性能。其次,结果表明,所开发的基于事件的方法适用于桥接异构内容表示。第三,检索方法与用户意见相比显示出准确的性能。第四,比较语义距离度量以研究最佳查询扩展策略。最后,开发了实用的解决方案以实现用户概要分析和结果聚类。结果表明,基于本体的方法能够实现异构知识表示的互操作性,并能给出准确的建议。方法在实际推荐系统中的部署显示了结果在现实生活中的适用性。

著录项

  • 作者

    Ruotsalo Tuukka;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号