首页> 外文OA文献 >Impact of fusion neutrons on helium production in beryllium and tungsten, and tritium breeding in ITER and DEMO
【2h】

Impact of fusion neutrons on helium production in beryllium and tungsten, and tritium breeding in ITER and DEMO

机译:聚变中子对铍和钨中氦的产生以及ITER和DEMO中tri的繁殖的影响

摘要

The project studies blanket designs of ITER and DEMO for neutron shielding, helium production and tritium breeding. On the one hand, a comparison has been made between beryllium and tungsten as first wall materials. On the other hand, tritium breeding blanket models have been studied, focus on the European test blanket module (TBM) concepts, the helium-cooled pebble bed (HCPB) and the helium-cooled lithium-lead (HCLL).The choice of plasma facing materials and the tritium breeding technology are key issues in the technological development of future fusion power plants. Whereas the ITER design includes beryllium as the first wall material of the blanket and tungsten in the divertor, DEMO will possibly use tungsten for both surfaces, due to beneficial characteristics of this material related to lower tritium retention and lower erosion rates. As future DEMO-type reactors are intended to be tritium self-sufficient, the reactors would dedicate most of the blanket to tritium breeding.Both analytical (multigroup diffusion theory) and Monte-Carlo methods were utilized to calculate the neutron fluxes and neutron induced reactions. The Serpent code is used to run Monte-Carlo simulations.The results for the Be-W comparison indicate that W is a better first wall material in terms of blanket shielding capability for high-energy neutrons and showing lower helium production in the first wall. However, the simulations for the HCPB and HCLL models show that the use of a Be first wall instead of W leads to a substantial increment of the tritium breeding ratio (TBR), allowing the use of lithium with lower enrichment.The assessment of the European tritium breeding blanket concepts indicated that HCPB models have a higher TBR and better shielding capability than HCLL models, being the HCPB with Be as first wall the most efficient breeding blanket.Finally, lithium depletion simulations for the HCPB and HCLL models showed that these blankets can be easily designed to work without recharging lithium during their estimated lifespan of 5 years.
机译:该项目研究了ITER和DEMO的毯式设计,用于中子屏蔽,氦气生产和and的繁殖。一方面,已经比较了铍和钨作为第一壁材料。另一方面,已经研究了breed繁殖毯模型,重点是欧洲测试毯模块(TBM)概念,氦冷却卵石床(HCPB)和氦冷却锂铅(HCLL)。表面材料和the育种技术是未来聚变电厂技术发展中的关键问题。尽管ITER设计包括铍作为覆盖层的第一壁材料和分流器中的钨,但DEMO可能会在两个表面上都使用钨,因为这种材料的有益特性与较低的tri保留率和较低的腐蚀速率有关。由于未来的DEMO型反应堆旨在实现tri的自给自足,因此这些反应堆将专门用于blanket的繁殖。分析(多组扩散理论)和蒙特卡洛方法均用于计算中子通量和中子诱发的反应。蛇形代码用于运行蒙特卡洛模拟.Be-W比较的结果表明,就高能中子的毯式屏蔽能力而言,W是更好的第一壁材料,并且在第一壁中产生的氦气较低。然而,对HCPB和HCLL模型的仿真表明,使用Be优先壁代替W会导致the繁殖比(TBR)的大幅增加,从而允许使用低富集锂。繁殖毯概念表明HCPB模型比HCLL模型具有更高的TBR和更好的屏蔽能力,而HCPB以Be作为第一壁是最有效的繁殖毯。最后,HCPB和HCLL模型的锂耗竭模拟表明这些毯子可以易于设计,可以在估计的5年使用寿命内不对锂充电。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号