首页> 外文OA文献 >Development of digital predistorters for broadband power amplifiers in OFDM systems using the simplicial canonical piecewise linear function
【2h】

Development of digital predistorters for broadband power amplifiers in OFDM systems using the simplicial canonical piecewise linear function

机译:使用简单正则分段线性函数开发OFDM系统中宽带功率放大器的数字预失真器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Power amplifiers (PAs) are inherently nonlinear devices. Linearity of a PA can be achieved by backing off the PA to its linear region at the expense of power efficiency loss. For signals with high envelope fluctuation such OFDM system, large backoff is required, causing significant loss in power efficiency. Thus, backoff is not a favourable solution. Digital predistorters (PDs) are widely employed for linearizing PAs that are driven to the nonlinear regions. In broadband systems where PAs exhibit memory effects, the PDs are also required to compensate the memory effects.This thesis deals with the development of digital PDs for broadband PAs in OFDM systems using the Simplicial Canonical Piecewise Linear (SCPWL) function. The SCPWL function offers a few advantages over polynomial models. It imposes a saturation after the last breakpoint, making it suitable for modelling nonlinearities of PA and PD. The breakpoints of the function can be freely placed to allow optimum fitting of a given nonlinearity. It is suitable for modeling strong nonlinearities. Analysis of the SCPWL spectra property shows that the function models infinite order of intermodulation distortion, even with small number of breakpoints. The accuracy of the model can be improved by increasing the number of breakpoints.The original real-valued SCPWL function is extended to include memory structure and complex-valued coefficients, resulting in the proposed baseband SCPWL model with memory. The model is adopted in the development of the Hammerstein-SCPWL PD and memory-SCPWL PD. Vector projection methods are developed for static SCPWL PDs identification. Adaptive algorithms employing the indirect and direct learning architectures are developed for identifying the Hammerstein-SCPWL PD and memory-SCPWL PD. By exploiting the properties of the SCPWL function, the algorithms are simplified. A modified Wiener model estimator is employed to circumvent the non-convex cost function problem of block models. This further reduces the complexity of the Hammerstein PD algorithms. The thesis also analyses the effects of measurement noise on indirect learning SCPWL filter. Due to its linear basis function, the SCPWL filter coefficients do not suffer the coefficient bias effects which are observed in polynomial models. The performance of the proposed SCPWL PDs are compared with state-of-the-art polynomial-based PDs by simulations and measurements.
机译:功率放大器(PA)本质上是非线性设备。通过以功率效率损失为代价将PA退回到其线性区域,可以实现PA的线性度。对于诸如OFDM系统之类具有高包络波动的信号,需要大的补偿,从而导致功率效率的显着损失。因此,退避不是一个好的解决方案。数字预失真器(PD)被广泛用于线性化被驱动到非线性区域的PA。在PA表现出记忆效应的宽带系统中,还需要PD来补偿记忆效应。本论文利用简单典范分段线性(SCPWL)功能开发了OFDM系统中宽带PA的数字PD。与多项式模型相比,SCPWL函数具有一些优势。它在最后一个断点之后施加饱和,使其适合于对PA和PD的非线性建模。该函数的断点可以自由放置,以实现给定非线性的最佳拟合。它适用于建模强非线性。对SCPWL光谱属性的分析表明,即使断点数量很少,该函数也可以建模互调失真的无限顺序。可以通过增加断点的数量来提高模型的准确性。原始的实值SCPWL函数被扩展为包括存储结构和复数值系数,从而创建了带有存储器的基带SCPWL模型。在Hammerstein-SCPWL PD和memory-SCPWL PD的开发中采用了该模型。开发了矢量投影方法来进行静态SCPWL PD识别。开发了采用间接和直接学习架构的自适应算法,用于识别Hammerstein-SCPWL PD和内存-SCPWL PD。通过利用SCPWL函数的属性,可以简化算法。采用改进的维纳模型估计器来规避块模型的非凸成本函数问题。这进一步降低了Hammerstein PD算法的复杂性。本文还分析了测量噪声对间接学习SCPWL滤波器的影响。由于其线性基函数,SCPWL滤波器系数不受多项式模型中观察到的系数偏差影响。通过仿真和测量,将拟议SCPWL PD的性能与基于最新多项式的PD进行比较。

著录项

  • 作者

    Cheong Mei Yen;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号