首页> 外文OA文献 >A modified ant colony optimization algorithm for network coding resource minimization
【2h】

A modified ant colony optimization algorithm for network coding resource minimization

机译:用于网络编码资源最小化的改进蚁群优化算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper presents a modified ant colony optimization approach for the network coding resource minimization problem. It is featured with several attractive mechanisms specially devised for solving the network coding resource minimization problem: 1) a multi-dimensional pheromone maintenance mechanism is put forward to address the issue of pheromone overlapping; 2) problem-specific heuristic information is employed to enhance the heuristic search (neighboring area search) capability; 3) a tabu-table based path construction method is devised to facilitate the construction of feasible (link-disjoint) paths from the source to each receiver; 4) a local pheromone updating rule is developed to guide ants to construct appropriate promising paths; 5) a solution reconstruction method is presented, with the aim of avoiding prematurity and improving the global search efficiency of proposed algorithm. Due to the way it works, the ant colony optimization can well exploit the global and local information of routing related problems during the solution construction phase. The simulation results on benchmark instances demonstrate that with the five extended mechanisms integrated, our algorithm outperforms a number of existing algorithms with respect to the best solutions obtained and the computational time.
机译:针对网络编码资源最小化问题,提出了一种改进的蚁群优化方法。它具有为解决网络编码资源最小化问题而专门设计的几种有吸引力的机制:1)提出了一种多维信息素维护机制来解决信息素重叠的问题; 2)使用特定于问题的启发式信息来增强启发式搜索(邻居区域搜索)的能力; 3)设计一种基于禁忌表的路径构造方法,以促进从源到每个接收器的可行(链路不相交)路径的构造; 4)制定了局部信息素更新规则,以指导蚂蚁构建适当的有希望的路径; 5)提出了一种解决方案重构方法,其目的是避免过早出现并提高所提算法的全局搜索效率。由于其工作方式,蚁群优化可以在解决方案构建阶段很好地利用路由相关问题的全局和局部信息。在基准实例上的仿真结果表明,在获得的最佳解决方案和计算时间方面,结合了五种扩展机制,我们的算法优于许多现有算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号