首页> 外文OA文献 >Poincare Recurrences and Topological Diversity
【2h】

Poincare Recurrences and Topological Diversity

机译:Poincare复发和拓扑多样性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Finite entropy thermal systems undergo Poincare recurrences. In the context of field theory, this implies that at finite temperature, timelike two-point functions will be quasi-periodic. In this note we attempt to reproduce this behavior using the AdS/CFT correspondence by studying the correlator of a massive scalar field in the bulk. We evaluate the correlator by summing over all the SL(2,Z) images of the BTZ spacetime. We show that all the terms in this sum receive large corrections after at certain critical time, and that the result, even if convergent, is not quasi-periodic. We present several arguments indicating that the periodicity will be very difficult to recover without an exact re-summation, and discuss several toy models which illustrate this. Finally, we consider the consequences for the information paradox.
机译:有限熵热系统经历庞加莱递归。在场论中,这意味着在有限的温度下,类似时间的两点函数将是准周期的。在本说明中,我们尝试通过研究块中大量标量字段的相关器,使用AdS / CFT对应来重现此行为。我们通过对BTZ时空的所有SL(2,Z)图像求和来评估相关器。我们表明,在某个关键时刻之后,该总和中的所有项都会得到较大的校正,并且即使收敛,其结果也不是准周期的。我们提出了一些论据,表明没有精确的重新求和就很难恢复周期性,并讨论了一些说明这一点的玩具模型。最后,我们考虑信息悖论的后果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号