首页> 外文OA文献 >Pixel-Based Machine Learning in Medical Imaging
【2h】

Pixel-Based Machine Learning in Medical Imaging

机译:医学影像中基于像素的机器学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Machine learning (ML) plays an important role in the medical imaging field, including medical image analysis and computer-aided diagnosis, because objects such as lesions and organs may not be represented accurately by a simple equation; thus, medical pattern recognition essentially require “learning from examples.” One of the most popular uses of ML is classification of objects such as lesions into certain classes (e.g., abnormal or normal, or lesions or nonlesions) based on input features (e.g., contrast and circularity) obtained from segmented object candidates. Recently, pixel/voxel-based ML (PML) emerged in medical image processing/analysis, which use pixel/voxel values in images directly instead of features calculated from segmented objects as input information; thus, feature calculation or segmentation is not required. Because the PML can avoid errors caused by inaccurate feature calculation and segmentation which often occur for subtle or complex objects, the performance of the PML can potentially be higher for such objects than that of common classifiers (i.e., feature-based MLs). In this paper, PMLs are surveyed to make clear (a) classes of PMLs, (b) similarities and differences within (among) different PMLs and those between PMLs and feature-based MLs, (c) advantages and limitations of PMLs, and (d) their applications in medical imaging.
机译:机器学习(ML)在医学成像领域(包括医学图像分析和计算机辅助诊断)中起着重要作用,因为诸如病变和器官之类的对象可能无法通过简单的方程式准确地表示。因此,医学模式识别本质上需要“从示例中学习”。 ML最流行的用途之一是根据从分割后的候选对象中获得的输入特征(例如,对比度和圆度)将诸如病变之类的对象分类为某些类别(例如,异常或正常,或病变或非病变)。最近,在医学图像处理/分析中出现了基于像素/体素的ML(PML),它直接使用图像中的像素/体素值代替由分割对象计算出的特征作为输入信息。因此,不需要特征计算或分割。因为PML可以避免因微妙或复杂对象经常发生的不正确的特征计算和分割而导致的错误,所以此类对象的PML的性能可能会比普通分类器(即基于特征的ML)更高。在本文中,对PML进行了调查,以弄清(a)PML的类别,(b)不同的PML之间(以及其中的PML和基于特征的ML之间的相似性和差异),(c)PML的优点和局限性,以及( d)它们在医学成像中的应用。

著录项

  • 作者

    Suzuki, Kenji;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号