首页> 外文OA文献 >A Bayesian Framework for Functional Mapping through Joint Modeling of Longitudinal and Time-to-Event Data
【2h】

A Bayesian Framework for Functional Mapping through Joint Modeling of Longitudinal and Time-to-Event Data

机译:通过纵向和事件时间数据的联合建模进行功能映射的贝叶斯框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The most powerful and comprehensive approach of study in modern biology is to understand the whole process of development and all events of importance to development which occur in the process. As a consequence, joint modeling of developmental processes and events has become one of the most demanding tasks in statistical research. Here, we propose a joint modeling framework for functional mapping of specific quantitative trait loci (QTLs) which controls developmental processes and the timing of development and their causal correlation over time. The joint model contains two submodels, one for a developmental process, known as a longitudinal trait, and the other for a developmental event, known as the time to event, which are connected through a QTL mapping framework. A nonparametric approach is used to model the mean and covariance function of the longitudinal trait while the traditional Cox proportional hazard (PH) model is used to model the event time. The joint model is applied to map QTLs that control whole-plant vegetative biomass growth and time to first flower in soybeans. Results show that this model should be broadly useful for detecting genes controlling physiological and pathological processes and other events of interest in biomedicine.
机译:现代生物学研究中最强大,最全面的方法是了解发展的整个过程以及该过程中发生的所有对发展重要的事件。结果,发展过程和事件的联合建模已成为统计研究中最苛刻的任务之一。在这里,我们为特定数量性状基因座(QTL)的功能映射提出了一个联合建模框架,该框架控制了发育过程,发育时间以及它们之间的因果关系。联合模型包含两个子模型,一个子模型通过QTL映射框架连接,一个子模型用于开发过程(称为纵向特征),另一个子模型用于发育事件(称为事件发生时间)。非参数方法用于对纵向特征的均值和协方差函数进行建模,而传统的Cox比例风险(PH)模型用于对事件时间进行建模。联合模型用于绘制QTL,以控制整株植物营养生物量的生长和大豆第一朵花的时间。结果表明,该模型应广泛用于检测控制生理和病理过程的基因以及生物医学中其他感兴趣的事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号