首页> 外文OA文献 >Flying-Patch Patch-Clamp Study of G22E-MscL Mutant under High Hydrostatic Pressure
【2h】

Flying-Patch Patch-Clamp Study of G22E-MscL Mutant under High Hydrostatic Pressure

机译:高静水压力下G22E-MscL突变体的飞片膜片钳研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High hydrostatic pressure (HHP) present in natural environments impacts on cell membrane biophysical properties and protein quaternary structure. We have investigated the effect of high hydrostatic pressure on G22E-MscL, a spontaneously opening mutant of Escherichia coli MscL, the bacterial mechanosensitive channel of large conductance. Patch-clamp technique combined with a flying-patch device and hydraulic setup allowed the study of the effects of HHP up to 90 MPa (as near the bottom of the Marianas Trench) on the MscL mutant channel reconstituted into liposome membranes, in addition to recording in situ from the mutant channels expressed in E. coli giant spheroplasts. In general, against thermodynamic predictions, hydrostatic pressure in the range of 0.1–90 MPa increased channel open probability by favoring the open state of the channel. Furthermore, hydrostatic pressure affected the channel kinetics, as manifested by the propensity of the channel to gate at subconducting levels with an increase in pressure. We propose that the presence of water molecules around the hydrophobic gate of the G22E MscL channel induce hydration of the hydrophobic lock under HHP causing frequent channel openings and preventing the channel closure in the absence of membrane tension. Furthermore, our study indicates that HHP can be used as a valuable experimental approach toward better understanding of the gating mechanism in complex channels such as MscL.
机译:自然环境中存在的高静水压(HHP)影响细胞膜的生物物理特性和蛋白质四级结构。我们已经研究了高静水压力对G22E-MscL的影响,G22E-MscL是大肠杆菌MscL的自发突变体,是大电导的细菌机械敏感通道。膜片钳技术与飞行器装置和液压装置相结合,除了记录之外,还可以研究高达90 MPa的HHP(在Marianas Trench的底部附近)对重构为脂质体膜的MscL突变体通道的影响。从大肠杆菌巨原生质球中表达的突变通道原位通常,与热力学预测相反,静水压力在0.1–90 MPa范围内,有利于通道的打开状态,从而增加了通道打开的可能性。此外,静水压力影响通道动力学,这表现为通道随着压力的增加而在亚导电水平上浇口的倾向。我们提出,G22E MscL通道疏水门周围的水分子的存在会诱导HHP下疏水锁的水合,从而导致频繁的通道打开并在没有膜张力的情况下防止通道关闭。此外,我们的研究表明,HHP可以用作有价值的实验方法,以更好地了解MscL等复杂通道中的门控机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号