首页> 外文OA文献 >Classification of heterodimer interfaces using docking models and construction of scoring functions for the complex structure prediction
【2h】

Classification of heterodimer interfaces using docking models and construction of scoring functions for the complex structure prediction

机译:使用对接模型对异二聚体界面进行分类并为复杂结构预测构建评分函数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protein–protein docking simulations can provide the predicted complex structural models. In a docking simulation, several putative structural models are selected by scoring functions from an ensemble of many complex models. Scoring functions based on statistical analyses of heterodimers are usually designed to select the complex model with the most abundant interaction mode found among the known complexes, as the correct model. However, because the formation schemes of heterodimers are extremely diverse, a single scoring function does not seem to be sufficient to describe the fitness of the predicted models other than the most abundant interaction mode. Thus, it is necessary to classify the heterodimers in terms of their individual interaction modes, and then to construct multiple scoring functions for each heterodimer type. In this study, we constructed the classification method of heterodimers based on the discriminative characters between near-native and decoy models, which were found in the comparison of the interfaces in terms of the complementarities for the hydrophobicity, the electrostatic potential and the shape. Consequently, we found four heterodimer clusters, and then constructed the multiple scoring functions, each of which was optimized for each cluster. Our multiple scoring functions were applied to the predictions in the unbound docking.
机译:蛋白质-蛋白质对接模拟可以提供预测的复杂结构模型。在对接仿真中,通过从许多复杂模型的集合中对函数进行评分来选择几个假定的结构模型。通常设计基于异二聚体统计分析的评分功能,以选择在已知复合物中发现的相互作用模式最丰富的复合物模型作为正确模型。但是,由于异二聚​​体的形成方案极为多样,因此,除最丰富的相互作用模式外,单一评分功能似乎不足以描述预测模型的适用性。因此,有必要根据异源二聚体的相互作用模式对其进行分类,然后为每种异源二聚体类型构建多个评分函数。在这项研究中,我们基于近自然模型和诱饵模型之间的判别特征构造了异二聚体的分类方法,这些特征是在界面的疏水性,静电势和形状的互补性比较中发现的。因此,我们发现了四个异二聚体簇,然后构建了多个评分函数,每个函数都针对每个簇进行了优化。我们的多重计分函数被应用于未绑定对接中的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号