首页> 外文OA文献 >Description of a Rule-based System for the i2b2 Challenge in Natural Language Processing for Clinical Data
【2h】

Description of a Rule-based System for the i2b2 Challenge in Natural Language Processing for Clinical Data

机译:用于临床数据的自然语言处理中的i2b2挑战的基于规则的系统的描述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Obesity Challenge, sponsored by Informatics for Integrating Biology and the Bedside (i2b2), a National Center for Biomedical Computing, asked participants to build software systems that could “read” a patient's clinical discharge summary and replicate the judgments of physicians in evaluating presence or absence of obesity and 15 comorbidities. The authors describe their methodology and discuss the results of applying Lockheed Martin's rule-based natural language processing (NLP) capability, ClinREAD. We tailored ClinREAD with medical domain expertise to create assigned default judgments based on the most probable results as defined in the ground truth. It then used rules to collect evidence similar to the evidence that the human judges likely relied upon, and applied a logic module to weigh the strength of all evidence collected to arrive at final judgments. The Challenge results suggest that rule-based systems guided by human medical expertise are capable of solving complex problems in machine processing of medical text.
机译:肥胖问题挑战赛是由信息学与生物学整合和国家生物医学计算中心床头(i2b2)赞助的,要求参与者构建可以“读取”患者临床出院摘要并复制医师在评估存在或不存在方面的判断的软件系统。没有肥胖和15种合并症。作者描述了他们的方法,并讨论了应用洛克希德·马丁公司基于规则的自然语言处理(NLP)功能ClinREAD的结果。我们根据医学领域的专业知识量身定制了ClinREAD,以根据基本事实中定义的最可能的结果创建分配的默认判断。然后,它使用规则来收集类似于人类法官可能依赖的证据的规则,并应用逻辑模块来权衡所收集的所有证据得出最终判决的依据。挑战结果表明,由人类医学专家指导的基于规则的系统能够解决医学文本机器处理中的复杂问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号