首页> 外文OA文献 >Distance geometry generates native-like folds for small helical proteins using the consensus distances of predicted protein structures.
【2h】

Distance geometry generates native-like folds for small helical proteins using the consensus distances of predicted protein structures.

机译:距离几何使用预测的蛋白质结构的共有距离为小螺旋蛋白质生成类似天然的折叠。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For successful ab initio protein structure prediction, a method is needed to identify native-like structures from a set containing both native and non-native protein-like conformations. In this regard, the use of distance geometry has shown promise when accurate inter-residue distances are available. We describe a method by which distance geometry restraints are culled from sets of 500 protein-like conformations for four small helical proteins generated by the method of Simons et al. (1997). A consensus-based approach was applied in which every inter-Calpha distance was measured, and the most frequently occurring distances were used as input restraints for distance geometry. For each protein, a structure with lower coordinate root-mean-square (RMS) error than the mean of the original set was constructed; in three cases the topology of the fold resembled that of the native protein. When the fold sets were filtered for the best scoring conformations with respect to an all-atom knowledge-based scoring function, the remaining subset of 50 structures yielded restraints of higher accuracy. A second round of distance geometry using these restraints resulted in an average coordinate RMS error of 4.38 A.
机译:为了成功地进行从头开始的蛋白质结构预测,需要一种从包含天然和非天然蛋白样构象的集合中鉴定天然样结构的方法。在这方面,当可获得精确的残基间距离时,距离几何的使用已显示出希望。我们描述了一种方法,通过该方法可以从由Simons等人方法生成的四个小螺旋蛋白的500个蛋白样构象集中剔除距离几何约束。 (1997)。应用了基于共识的方法,其中测量了每个Calpha间的距离,并将最频繁出现的距离用作距离几何的输入约束。对于每种蛋白质,构建的结构的均方根均方根误差(RMS)低于原始组的均值。在三种情况下,其折叠的拓扑结构类似于天然蛋白质的拓扑结构。当针对基于全原子知识的评分功能为最佳评分构型筛选折叠集时,剩下的50个结构子集产生了更高准确性的约束。使用这些约束的第二轮距离几何导致平均坐标RMS误差为4.38 A.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号