首页> 外文OA文献 >SHARE: an adaptive algorithm to select the most informative set of SNPs for candidate genetic association
【2h】

SHARE: an adaptive algorithm to select the most informative set of SNPs for candidate genetic association

机译:SHARE:一种自适应算法,可以为候选遗传关联选择最有信息的SNP集

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Association studies have been widely used to identify genetic liability variants for complex diseases. While scanning the chromosomal region 1 single nucleotide polymorphism (SNP) at a time may not fully explore linkage disequilibrium, haplotype analyses tend to require a fairly large number of parameters, thus potentially losing power. Clustering algorithms, such as the cladistic approach, have been proposed to reduce the dimensionality, yet they have important limitations. We propose a SNP-Haplotype Adaptive REgression (SHARE) algorithm that seeks the most informative set of SNPs for genetic association in a targeted candidate region by growing and shrinking haplotypes with 1 more or less SNP in a stepwise fashion, and comparing prediction errors of different models via cross-validation. Depending on the evolutionary history of the disease mutations and the markers, this set may contain a single SNP or several SNPs that lay a foundation for haplotype analyses. Haplotype phase ambiguity is effectively accounted for by treating haplotype reconstruction as a part of the learning procedure. Simulations and a data application show that our method has improved power over existing methodologies and that the results are informative in the search for disease-causal loci.
机译:关联研究已被广泛用于识别复杂疾病的遗传责任变异。虽然一次扫描染色体区域1单核苷酸多态性(SNP)可能无法完全探索连锁不平衡,但单倍型分析往往需要相当大量的参数,因此可能会失去功效。已经提出了聚类算法,例如cladistic方法,以减少维数,但它们具有重要的局限性。我们提出了一种SNP-单倍型自适应回归(SHARE)算法,该算法通过逐步增加和缩小具有1个或更少SNP的单倍型,并逐步寻找和比较不同预测误差,来寻找目标候选区域中遗传关联最丰富的SNP集。通过交叉验证的模型。根据疾病突变和标记的进化史,该组可能包含单个SNP或几个SNP,这些单核苷酸为单倍型分析奠定了基础。通过将单倍型重建视为学习过程的一部分,可以有效地解决单倍型阶段的歧义。仿真和数据应用表明,与现有方法相比,我们的方法具有更高的功能,并且该结果对于寻找疾病致病基因座具有参考价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号