首页> 外文OA文献 >Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks
【2h】

Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks

机译:离散随机化学反应网络参数敏感性的高效计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Parametric sensitivity of biochemical networks is an indispensable tool for studying system robustness properties, estimating network parameters, and identifying targets for drug therapy. For discrete stochastic representations of biochemical networks where Monte Carlo methods are commonly used, sensitivity analysis can be particularly challenging, as accurate finite difference computations of sensitivity require a large number of simulations for both nominal and perturbed values of the parameters. In this paper we introduce the common random number (CRN) method in conjunction with Gillespie’s stochastic simulation algorithm, which exploits positive correlations obtained by using CRNs for nominal and perturbed parameters. We also propose a new method called the common reaction path (CRP) method, which uses CRNs together with the random time change representation of discrete state Markov processes due to Kurtz to estimate the sensitivity via a finite difference approximation applied to coupled reaction paths that emerge naturally in this representation. While both methods reduce the variance of the estimator significantly compared to independent random number finite difference implementations, numerical evidence suggests that the CRP method achieves a greater variance reduction. We also provide some theoretical basis for the superior performance of CRP. The improved accuracy of these methods allows for much more efficient sensitivity estimation. In two example systems reported in this work, speedup factors greater than 300 and 10 000 are demonstrated.
机译:生化网络的参数敏感性是研究系统鲁棒性,估算网络参数以及确定药物治疗目标的必不可少的工具。对于通常使用蒙特卡洛方法的生化网络的离散随机表示,灵敏度分析可能尤其具有挑战性,因为准确的灵敏度有限差分计算需要对参数的标称值和扰动值进行大量模拟。在本文中,我们结合Gillespie的随机模拟算法介绍了公共随机数(CRN)方法,该算法利用了通过将CRN用于名义参数和扰动参数而获得的正相关。我们还提出了一种称为共反应路径(CRP)方法的新方法,该方法将CRN与由于库尔兹(Kurtz)引起的离散状态马尔可夫过程的随机时间变化表示一起通过有限差分逼近来估计灵敏度,该有限差分近似适用于出现的耦合反应路径很自然地以这种表示方式。尽管与独立随机数有限差分实现相比,这两种方法均显着降低了估计量的方差,但数字证据表明CRP方法实现了更大的方差减少。我们还为CRP的卓越性能提供了一些理论依据。这些方法的提高的准确性允许更有效的灵敏度估计。在这项工作中报告的两个示例系统中,展示了大于300和10 000的加速因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号