Despite the recent successes of nuclear energy researchers, the scientific community still remains some distance from being able to create controlled, self-sustaining fusion reactions. Inertial Confinement Fusion (ICF) techniques represent one possible option to surpass this barrier, with scientific simulation playing a leading role in guiding and supporting their development. The simulation of such techniques allows for safe and efficient investigation of laser design and pulse shaping, as well as providing insight into the reaction as a whole.ududThe research presented here focuses on the simulation code EPOCH, a fully relativistic particle-in-cell plasma physics code concerned with faithfully recreating laser-plasma interactions at scale. ududA significant challenge in developing large codes like EPOCH is maintaining effective scientific delivery on successive generations of high-performance computing architecture. To support this process, we adopt the use of mini-applications -- small code proxies that encapsulate important computational properties of their larger parent counterparts. Through the development of a mini-application for EPOCH (called miniEPOCH), we investigate a variety of the performance features exhibited in EPOCH, expose opportunities for optimisation and increased scientific capability, and offer our conclusions to guide future changes to similar ICF codes.
展开▼
机译:尽管核能研究人员最近取得了成功,但科学界距离能够产生可控的,自我维持的聚变反应还有一段距离。惯性约束融合(ICF)技术是克服这一障碍的一种可能选择,科学模拟在指导和支持其发展方面起着主导作用。这种技术的仿真可以安全有效地研究激光设计和脉冲整形,并提供对整个反应的洞察力。 ud ud此处介绍的研究重点是仿真代码EPOCH,这是一种完全相对论的粒子嵌入细胞等离子体物理代码涉及忠实地大规模重建激光-等离子体相互作用。 ud ud在开发诸如EPOCH之类的大型代码时,一项重大挑战是如何在下一代高性能计算体系结构上保持有效的科学交付。为了支持此过程,我们采用了小型应用程序-小型代码代理,这些代理封装了较大的父对象的重要计算属性。通过开发EPOCH的微型应用程序(称为miniEPOCH),我们研究了EPOCH展示的各种性能特征,揭示了优化机会和增强的科学能力,并提供了结论,以指导将来对类似ICF代码的更改。
展开▼
机译:用等离子体约束实现重力场的动态控制热核聚变(TLTS)方法,通过热辐射等离子体绝缘的壁反应堆防止中子辐射并节省磁场和等离子体的混合,使用旋转磁场的异步磁惯性约束反应堆(AMITYAR和HFM)为实施该方法,在该反应器中点燃热核反应的方法,爆炸式等离子发生器(VIP)的实施方法,以及具有HFM的特立普安瓿,以实现D + T反应和具有超高温热度的HFM D +3НЕ和1Н+11В的高温反应