首页> 外文OA文献 >Improved realtime state-of-charge estimation of LiFePO battery based on a novel thermoelectric model
【2h】

Improved realtime state-of-charge estimation of LiFePO battery based on a novel thermoelectric model

机译:基于新型热电模型的改进的LiFePO电池实时充电状态估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Li-ion batteries have been widely used in electric vehicles, and battery internal state estimation plays an important role in the battery management system. However, it is technically challenging, in particular, for the estimation of the battery internal temperature and state-ofcharge (SOC), which are two key state variables affecting the battery performance. In this paper, a novel method is proposed for real-time simultaneous estimation of these two internal states, thus leading to a significantly improved battery model for real-time SOC estimation. To achieve this, a simplified battery thermoelectric model is firstly built, which couples a thermal submodel and an electrical submodel. The interactions between the battery thermal and electrical behaviours are captured, thus offering a comprehensive description of the battery thermal and electrical behaviour. To achieve more accurate internal state estimations, the model is trained by the simulation error minimization method, and model parameters are optimized by a hybrid optimization method combining a meta-heuristic algorithm and the least square approach. Further, time varying model parameters under different heat dissipation conditions are considered, and a joint extended Kalman filter is used to simultaneously estimate both the battery internal states and time-varying model parameters in real time. Experimental results based on the testing data of LiFePO4 batteries confirm the efficacy of the proposed method.
机译:锂离子电池已广泛用于电动汽车,电池内部状态估计在电池管理系统中起着重要作用。但是,对于估算电池内部温度和充电状态(SOC),这在技术上尤其具有挑战性,这是影响电池性能的两个关键状态变量。在本文中,提出了一种用于同时同时估计这两个内部状态的新方法,从而大大改善了用于实时SOC估计的电池模型。为此,首先建立简化的电池热电模型,该模型将热子模型和电子模型耦合。捕获了电池热和电行为之间的相互作用,从而提供了电池热和电行为的全面描述。为了获得更准确的内部状态估计,通过模拟误差最小化方法对模型进行训练,并通过结合元启发式算法和最小二乘法的混合优化方法对模型参数进行优化。此外,考虑了在不同散热条件下的时变模型参数,并使用联合扩展卡尔曼滤波器同时实时估计电池内部状态和时变模型参数。基于LiFePO4电池测试数据的实验结果证实了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号