首页> 外文OA文献 >Weighted level set evolution based on local edge features for medical image segmentation
【2h】

Weighted level set evolution based on local edge features for medical image segmentation

机译:基于局部边缘特征的加权水平集演化用于医学图像分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Level set methods have been widely used to implement active contours for image segmentation applications due to their good boundary detection accuracy. In the context of medical image segmentation, weak edges and inhomogeneities remain important issues that may hinder the accuracy of any segmentation method based on active contours implemented using level set methods. This paper proposes a method based on active contours implemented using level set methods for segmentation of such medical images. The proposed method uses a level set evolution that is based on the minimization of an objective energy functional whose energy terms are weighted according to their relative importance in detecting boundaries. This relative importance is computed based on local edge features collected from the adjacent region located inside and outside of the evolving contour. The local edge features employed are the edge intensity and the degree of alignment between the image’s gradient vector flow field and the evolving contour’s normal. We evaluate the proposed method for segmentation of various regions in real MRI and CT slices, X-ray images, and ultra sound images. Evaluation results confirm the advantage of weighting energy forces using local edge features to reduce leakage. These results also show that the proposed method leads to more accurate boundary detection results than state-of-the-art edge-based level set segmentation methods, particularly around weak edges.ud
机译:水平集方法由于其良好的边界检测精度而被广泛用于实现图像分割应用中的活动轮廓。在医学图像分割的背景下,弱边缘和不均匀性仍然是重要问题,可能会妨碍基于使用级别集方法实现的主动轮廓线的任何分割方法的准确性。本文提出了一种基于活动轮廓的方法,该轮廓使用水平集方法实现,用于分割此类医学图像。所提出的方法使用基于目标能量函数的最小化的水平集演化,该目标能量函数的能量项根据其在检测边界中的相对重要性进行加权。该相对重要性是根据从位于演变轮廓内部和外部的相邻区域收集的局部边缘特征计算得出的。所采用的局部边缘特征是边缘强度以及图像的梯度矢量流场与不断变化的轮廓法线之间的对齐程度。我们评估提出的方法来对真实的MRI和CT切片,X射线图像和超声图像中的各个区域进行分割。评估结果证实了使用局部边缘特征加权能量以减少泄漏的优势。这些结果还表明,与基于现有技术的基于边缘的水平集分割方法相比,所提出的方法可导致更准确的边界检测结果,尤其是在弱边缘附近。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号