首页> 外文OA文献 >A new lot sizing and scheduling heuristic for multi-site biopharmaceutical production
【2h】

A new lot sizing and scheduling heuristic for multi-site biopharmaceutical production

机译:用于多站点生物制药生产的新的批量确定和计划启发式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biopharmaceutical manufacturing requires high investments and long-term production planning. For large biopharmaceutical companies, planning typically involves multiple products and several production facilities. Production is usually done in batches with a substantial set-up cost and time for switching between products. The goal is to satisfy demand while minimising manufacturing, set-up and inventory costs. The resulting production planning problem is thus a variant of the capacitated lot-sizing and scheduling problem, and a complex combinatorial optimisation problem. Inspired by genetic algorithm approaches to job shop scheduling, this paper proposes a tailored construction heuristic that schedules demands of multiple products sequentially across several facilities to build a multi-year production plan (solution). The sequence in which the construction heuristic schedules the different demands is optimised by a genetic algorithm. We demonstrate the effectiveness of the approach on a biopharmaceutical lot sizing problem and compare it with a mathematical programming model from the literature. We show that the genetic algorithm can outperform the mathematical programming model for certain scenarios because the discretisation of time in mathematical programming artificially restricts the solution space.
机译:生物制药生产需要大量投资和长期生产计划。对于大型生物制药公司,计划通常涉及多个产品和多个生产设施。通常,批量生产需要花费大量的设置成本和时间来切换产品。目标是在最小化制造,设置和库存成本的同时满足需求。因此,由此产生的生产计划问题是容量很大的批量确定和调度问题的变体,也是复杂的组合优化问题。受遗传算法方法启发,对车间作业进行调度,本文提出了一种量身定制的构造启发式方法,该方法可在多个设施中按顺序调度多个产品的需求,以制定多年的生产计划(解决方案)。通过遗传算法优化了构造启发式计划不同需求的顺序。我们证明了该方法对生物制药批量确定问题的有效性,并将其与文献中的数学编程模型进行了比较。我们证明了遗传算法在某些情况下可以胜过数学规划模型,因为数学规划中的时间离散化人为地限制了求解空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号