首页> 外文OA文献 >Modular Architectures And Optimization Techniques For Power And Reliability In Future Many Core Microprocessors
【2h】

Modular Architectures And Optimization Techniques For Power And Reliability In Future Many Core Microprocessors

机译:未来许多核心微处理器的电源和可靠性的模块化架构和优化技术

摘要

Power and reliability issues are expected to increase in future multicore systems with a higher degree of component integration. As the feature sizes of transistors continue to shrink, more resources can be incorporated in microprocessors to address a broader spectrum of different application requirements. However, power constraints will limit the amount of resources that can be powered on at any given time. Recent studies have shown that future multicore systems will be able to power on less than 80% of their transistors in the near future, and less than 50% in the long term. The most difficult challenge is deciding which transistors should be powered on at any given time to deliver high performance under strict power constraints. At the same time, device reliability issues - the proliferation of devices that will either be defective at manufacturing time or will fail in the field with usage - are projected to be exacerbated by the continued scaling of device sizes. We present a modular, dynamically reconfigurable architecture as a promising unified solution to the problems of dark silicon (the inability to power all available computing resources) and reliability. Our modular architecture implements deconfigurable lanes within the decoupled sections of a superscalar pipeline that can be easily powered on or off to isolate faults or create an energy-efficient hardware configuration tailored to the needs of the running software. At the system level, we propose a novel framework that uses surrogate response surfaces and heuristic global optimization algorithms to characterize the behavior of applications at runtime and dynamically redistribute the available chip-wide power to obtain hardware configurations customized for the software diversity and system goals. Our reconfigurable architecture is able to provide high performance under a strict power budget, maintain a certain performance level at a reduced power cost, and in the case of hard faults, restore the system's performance to pre-fault levels.
机译:在组件集成度更高的未来多核系统中,功率和可靠性问题预计会越来越多。随着晶体管的特征尺寸不断缩小,可以将更多资源整合到微处理器中,以解决更广泛的不同应用需求。但是,电源限制将限制在任何给定时间可以打开的资源量。最近的研究表明,未来的多核系统在不久的将来将能够为其晶体管供电的功率不到80%,而从长期来看,将不到50%。最困难的挑战是确定在给定的时间应打开哪些晶体管,以在严格的功率约束下提供高性能。同时,随着设备尺寸的不断扩大,预计设备可靠性问题(在制造时会出现缺陷的设备或在使用后在现场失效的设备的泛滥)会加剧。我们提出了一种模块化的,动态可重新配置的体系结构,作为有前途的统一解决方案,可以解决深色硅片(无法为所有可用的计算资源供电)的问题和可靠性。我们的模块化体系结构在超标量管道的解耦部分内实现了可配置通道,可轻松打开或关闭电源以隔离故障或创建符合运行软件需求的高能效硬件配置。在系统级别,我们提出了一个新颖的框架,该框架使用代理响应面和启发式全局优化算法来表征应用程序在运行时的行为,并动态重新分配可用的全芯片电源,以获得针对软件多样性和系统目标定制的硬件配置。我们的可重配置架构能够在严格的电源预算下提供高性能,以降低的电源成本维持一定的性能水平,并且在发生硬故障的情况下,可以将系统性能恢复到故障前的水平。

著录项

  • 作者

    Petrica Paula;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号