首页> 外文OA文献 >Scaling Silicon Nanophotonic Interconnects : Silicon Electrooptic Modulators, Slowlight Optomechanical Devices
【2h】

Scaling Silicon Nanophotonic Interconnects : Silicon Electrooptic Modulators, Slowlight Optomechanical Devices

机译:缩放硅纳米光子互连:硅电光调制器,慢光和光机械设备

摘要

The ability to manipulate light has enabled robust growth of communications over the past 50 years. The energy spent by interconnects is now a major consideration for high performance computing, datacom servers and low carbon footprint telecommunications. Hence, it is of great interest to pursue novel devices for manipulating light. Silicon nanophotonics, which is the exploration of optical devices based in silicon compatible materials, has emerged as a powerful solution for providing the bandwidth for future communications. This thesis attempts at scaling the silicon nanophotonic interconnects to meet the future needs. The first key result of my thesis is an 18 Gbit/s micro-ring modulator. This is the fastest digital modulation speed shown in silicon micro-rings to date. In the first section of this thesis, I will show how to achieve very high speed modulation in silicon substrates using silicon micro-ring modulators. In the effort to optimize their performance I have shown the following key milestones: 1. Speed: 18 Gbit/s modulation in a silicon micro-ring modulator (MRM) 2. Robustness: 20 K temperature stability using a silicon micro-ring modulators 3. Size: 2.5 micron radius silicon micro ring modulator : Smallest MRM to date 4. Scalability: 50 Gbit/s modulation capacity using 4 WDM channels : Largest WDM modulation capacity using micro-rings 5. Low Voltage Swing: 150 mv swing voltage modulation in silicon microrings. 6. Long Haul: Error free transmission of 12.5 Gbit/s signal over 80 km on a standard single mode fiber. The second part of my thesis is on slow and fast light in silicon. Using two micro-rings coupled in a coherent fashion, I have shown the following: 7. Superluminal propagation on a silicon chip using double ring cavities. 8. Designed, fabricated and tested electro-optically tunable optical delay on a silicon micro-chip, electro-optically tunable variable quality factor cavities. The third part of my thesis explores the possibilities when MEMS and silicon photonics are put together. I have attempted two key problems : 9. Non-reciprocal devices in opto-mechanics. 10. Synchronization of frequency and phase in micromechanical devices using opto-mechanics.
机译:在过去的50年中,操纵光的能力使通信得以强劲增长。对于高性能计算,数据通信服务器和低碳足迹的电信,互连所消耗的能量现已成为主要考虑因素。因此,寻求用于操纵光的新颖装置具有极大的兴趣。硅纳米光子学是对基于硅兼容材料的光学器件的探索,它已经成为为未来通信提供带宽的强大解决方案。本文试图对硅纳米光子互连进行缩放,以满足未来的需求。本文的第一个关键结果是一个18 Gbit / s的微环调制器。这是迄今为止硅微环中显示的最快的数字调制速度。在本文的第一部分中,我将展示如何使用硅微环调制器在硅基板上实现超高速调制。为了优化其性能,我展示了以下关键里程碑:1.速度:硅微环调制器(MRM)中的18 Gbit / s调制2.鲁棒性:使用硅微环调制器的20 K温度稳定性3 。尺寸:2.5微米半径的硅微环调制器:迄今为止最小的MRM 4.可扩展性:使用4个WDM通道的调制能力为50 Gbit / s:使用微环的最大WDM调制能力5.低压摆幅:150 mv摆幅调制硅微环。 6.长距离传输:在标准单模光纤上,在80 km范围内无错误传输12.5 Gbit / s信号。我的论文的第二部分是关于硅的慢光和快光。通过使用以相干方式耦合的两个微环,我显示了以下内容:7.使用双环腔在硅芯片上进行超腔传播。 8.在硅微芯片上设计,制造和测试的电光可调光延迟,电光可调的可变品质因数腔。本文的第三部分探讨了将MEMS和硅光子技术放在一起的可能性。我尝试了两个关键问题:9.光机械中的不可逆设备。 10.使用光机械使微机械装置中的频率和相位同步。

著录项

  • 作者

    Manipatruni Sasikanth;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号