首页> 外文OA文献 >The Synthesis And Characterization Of Germanium Nanoparticles And Nanowires And The Study Of Their Potential In Photovoltaics
【2h】

The Synthesis And Characterization Of Germanium Nanoparticles And Nanowires And The Study Of Their Potential In Photovoltaics

机译:锗纳米粒子和纳米线的合成,表征及其在光伏中的潜力研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The increasing energy demand of an overpopulated society has bolstered the interest in exploring renewable energy forms, one of which is solar energy. Current solar cell technology is neither an efficient nor cost-effective alternative to currently used fossil fuels. Nanostructured semiconductor building blocks are expected to play a central role in the development of next-generation cost-effective solar cell technology. Among the various materials that have been explored and studied, Ge holds particular promise due to it favorable band gap and good transport characteristic. A method to produce colloidal Ge nanocrystals, however, has not yet been established. Colloidal synthesis provides a scalable and cost-effective route to nanocrystalline semiconductor material as building blocks in low-cost PV energy conversion devices. This work describes the synthesis and characterization of Ge nanoparticles and Ge nanowires and their potential applications. Ge nanoparticles, 1.9 - 16.0 nm, are synthesized via colloidal synthesis by reducing germanium iodide using a strong reducing agent in various coordinating solvents. The effects of reaction and injection temperature, reaction time, and initial concentration are studied. A minimum temperature of 250 degree C is required to crystallize Ge in a colloidal synthesis, below which only amorphous material is formed. An increase in reaction temperature from 250 to 300 degree C has little effect on the final nanocrystal size and structure. A temperature of 200 degree C was found to minimize crystal growth defects. Increasing or decreasing the injection temperature increased the crystal defects. The final crystalline products are analyzed using XRD, FTIR, TEM, HR-TEM, SEM, UV-vis spectroscopy, and PL to study oxidation, crystal structure, and optical properties. Spin coated germanium nanoparticles are combined with sputtered a-Si to create a polysilicon-Ge matrix which could direct charge transfer and decrease recombination of photogenerated charges. As a complementary nanocrystalline Ge building block nanowires were also synthesized by the thermal decomposition of DPG and TMG in supercritical hexane using a batch and a semicontinuous supercritical reactor. Up to 210 mg are synthesized and collected using this process with a diameter range of 20 nm to 60 nm and lengths up to 15 mu-m. The continuously grown nanowire experimental yield is ~35%, compared to the batch experimental yield of 15%. The Ge nanowires were easily extracted from the collection vessel and characterized using TEM, SEM, and XRD to confirm the presence of Ge and to study the structure of the wires.
机译:人口过剩的社会对能源的需求不断增长,激发了人们对探索可再生能源形式的兴趣,其中可再生能源形式之一就是太阳能。当前的太阳能电池技术既不是当前使用的化石燃料的有效替代方法,也不是具有成本效益的替代方法。纳米结构的半导体构件有望在下一代具有成本效益的太阳能电池技术的发展中发挥中心作用。在已经探索和研究的各种材料中,锗由于其良好的带隙和良好的传输特性而具有特别的前景。然而,尚未建立生产胶态Ge纳米晶体的方法。胶态合成为低成本PV能量转换设备中的构建基块提供了可扩展且具有成本效益的途径,以纳米晶半导体材料为原料。这项工作描述了Ge纳米粒子和Ge纳米线的合成,表征及其潜在应用。通过胶体合成,通过在各种配位溶剂中使用强还原剂还原碘化锗,可以合成1.9-16.0 nm的Ge纳米粒子。研究了反应和进样温度,反应时间和初始浓度的影响。在胶态合成中,结晶Ge所需的最低温度为250摄氏度,在此之下仅形成非晶材料。将反应温度从250℃升高至300℃对最终的纳米晶体尺寸和结构几乎没有影响。发现200℃的温度使晶体生长缺陷最小化。增加或降低注入温度会增加晶体缺陷。使用XRD,FTIR,TEM,HR-TEM,SEM,UV-vis光谱和PL分析最终的晶体产物,以研究氧化,晶体结构和光学性质。将旋涂的锗纳米粒子与溅射的a-Si结合以创建多晶硅Ge基体,该基体可以指导电荷转移并减少光生电荷的重组。作为互补的纳米晶Ge构造单元,纳米线还通过使用间歇和半连续超临界反应器在超临界己烷中将DPG和TMG热分解而合成。使用该方法可以合成和收集多达210 mg的粉末,直径范围为20 nm至60 nm,长度最大为15μm。连续生长的纳米线实验产率为〜35%,而批量实验产率为15%。 Ge纳米线很容易从收集容器中提取出来,并使用TEM,SEM和XRD进行表征,以确认Ge的存在并研究这些线的结构。

著录项

  • 作者

    Codoluto Stephen;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号