首页> 外文OA文献 >Investigating Flow Behaviors of Colloidal Materials at the Single-particle Scale
【2h】

Investigating Flow Behaviors of Colloidal Materials at the Single-particle Scale

机译:在单粒子尺度上研究胶体材料的流动行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

My thesis work focuses on the nonlinear mechanical behaviors of colloidal suspensions at the particle-level. This work covers both quiescent and strongly sheared suspensions. For quiescent suspensions, we image their 3D structures with confocal microscopy, and implement Stress Assessment from Local Structural Anisotropy (SALSA) to visualize the stress fields in them. Unlike traditional numerical methods, SALSA takes a statistical approach converting the probability of hard-sphere Brownian collisions to stresses. This direct stress measurement allows us to quantify the particle-level stresses surrounding vacancies, dislocations, and grain boundaries in crystalline materials. To drive the suspensions away from equilibrium, we develop a confocal-rheoscope, which is able to shear and image colloidal materials simultaneously. Using this device, we investigate the nonlinear flow behavior governed by Brownian motion, shear induced diffusion, and advection, and more importantly, disentangle them. We also study particle assembly and its corresponding rheological properties under confinement. Finally, we study even more strongly sheared suspensions, in which particle dynamics are too fast to be imaged by a confocal microscope. Here, we use flow reversal rheometry to reveal the underlying mechanism of suspension shear thickening where the viscosity increases with shear rate. We show that the thickening behavior of a suspension arises from the particle contact forces rather than hydrodynamic interactions. Such findings then lead us to design a biaxial shear protocol that can tune the suspension viscosity on demand. This viscosity tuning capability is a foundational step toward using dense suspensions in 3D printing, energy storage, and robotics.
机译:我的论文主要研究胶体悬浮液在颗粒级的非线性力学行为。这项工作涵盖了静态和强烈剪切的悬浮液。对于静态悬架,我们用共聚焦显微镜对它们的3D结构成像,并从局部结构各向异性(SALSA)进行应力评估以可视化其中的应力场。与传统的数值方法不同,SALSA采用统计方法将硬球布朗碰撞的概率转换为应力。这种直接的应力测量使我们能够量化晶体材料中空位,位错和晶界周围的颗粒级应力。为了驱使悬浮液脱离平衡状态,我们开发了一种共焦流变仪,它能够同时剪切和成像胶体材料。使用该装置,我们研究了由布朗运动,剪切诱导的扩散和对流控制的非线性流动行为,更重要的是,将它们解开。我们还研究了约束条件下的颗粒组装及其相应的流变性质。最后,我们研究了剪切强度更大的悬浮液,其中的粒子动力学太快,无法用共聚焦显微镜成像。在这里,我们使用逆流流变法揭示了悬浮液剪切增稠的基本机理,其中粘度随剪切速率的增加而增加。我们表明,悬浮液的增稠行为是由颗粒接触力而不是流体动力相互作用引起的。然后,这些发现促使我们设计了一种双轴剪切方案,可以根据需要调整悬浮液的粘度。这种粘度调节功能是在3D打印,能量存储和机器人技术中使用密集悬浮液的基础步骤。

著录项

  • 作者

    Lin Neil (Yen-Chih);

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号