首页> 外文OA文献 >Compression of ECG signals using variable-length classifA +/- ed vector sets and wavelet transforms
【2h】

Compression of ECG signals using variable-length classifA +/- ed vector sets and wavelet transforms

机译:使用可变长度的class +/- ed向量集和小波变换压缩ECG信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this article, an improved and more efficient algorithm for the compression of the electrocardiogram (ECG) signals is presented, which combines the processes of modeling ECG signal by variable-length classified signature and envelope vector sets (VL-CSEVS), and residual error coding via wavelet transform. In particular, we form the VL-CSEVS derived from the ECG signals, which exploits the relationship between energy variation and clinical information. The VL-CSEVS are unique patterns generated from many of thousands of ECG segments of two different lengths obtained by the energy based segmentation method, then they are presented to both the transmitter and the receiver used in our proposed compression system. The proposed algorithm is tested on the MIT-BIH Arrhythmia Database and MIT-BIH Compression Test Database and its performance is evaluated by using some evaluation metrics such as the percentage root-mean-square difference (PRD), modified PRD (MPRD), maximum error, and clinical evaluation. Our experimental results imply that our proposed algorithm achieves high compression ratios with low level reconstruction error while preserving the diagnostic information in the reconstructed ECG signal, which has been supported by the clinical tests that we have carried out.
机译:本文提出了一种改进的,更有效的心电图(ECG)信号压缩算法,该算法结合了通过可变长度分类签名和包络矢量集(VL-CSEVS)对ECG信号建模的过程以及残差通过小波变换编码。特别是,我们形成了源自ECG信号的VL-CSEVS,它利用了能量变化和临床信息之间的关系。 VL-CSEVS是通过基于能量的分割方法从成千上万的两个不同长度的ECG片段生成的独特模式,然后将它们呈现给我们建议的压缩系统中使用的发送器和接收器。将该算法在MIT-BIH心律失常数据库和MIT-BIH压缩测试数据库上进行了测试,并通过一些评估指标(如均方根差百分比(PRD),修改后的PRD(MPRD),最大值)来评估其性能。错误和临床评估。我们的实验结果表明,我们提出的算法在保留重构的ECG信号中的诊断信息的同时,实现了具有低重构误差的高压缩比,这已经得到我们的临床测试的支持。

著录项

  • 作者

    Gürkan Hakan;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号