首页> 外文OA文献 >A Stereovision Method for Obstacle Detection and Tracking in Non-Flat Urban Environments
【2h】

A Stereovision Method for Obstacle Detection and Tracking in Non-Flat Urban Environments

机译:一种用于非平坦城市环境中障碍物检测和跟踪的立体视觉方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Obstacle detection is an essential capability for the safe guidance of autonomous vehicles, especially in urban environments. This paper presents an efficient method to integrate spatial and temporal constraints for detecting and tracking obstacles in urban environments. In order to enhance the reliability of the obstacle detection task, we do not consider the urban roads as rigid planes, but as quasi-planes, whose normal vectors have orientation constraints. Under this flexible road model, we propose a fast, robust stereovision based obstacle detection method. A watershed transformation is employed for obstacle segmentation in dense traffic conditions, even with partial occlusions, in urban environments. Finally a UKF (Unscented Kalman filter) is applied to estimate the obstacles parameters under a nonlinear observation model. To avoid the difficulty of the computation in metric space, the whole detection process is performed in the disparity image. Various experimental results are presented, showing the advantages of this method.
机译:障碍物检测是安全引导自动驾驶车辆的一项重要功能,特别是在城市环境中。本文提出了一种有效的方法来整合时空约束,以检测和跟踪城市环境中的障碍物。为了提高障碍物检测任务的可靠性,我们不将城市道路视为刚性平面,而将其视为准平面,其法向矢量具有方向约束。在这种灵活的道路模型下,我们提出了一种基于立体视觉的快速,强大的障碍物检测方法。在城市环境中,即使在部分遮挡的情况下,即使在交通拥堵的情况下,分水岭变换也可用于障碍物分割。最后,在非线性观测模型下,使用UKF(无味卡尔曼滤波器)估计障碍物参数。为了避免度量空间中的计算困难,整个检测过程在视差图像中执行。提出了各种实验结果,显示了该方法的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号