首页> 外文OA文献 >Understanding bioremediation of contaminated groundwater: Application of a lux bioreporter to monitor in situ bacterial catabolism of naphthalene in saturated porous media
【2h】

Understanding bioremediation of contaminated groundwater: Application of a lux bioreporter to monitor in situ bacterial catabolism of naphthalene in saturated porous media

机译:了解受污染地下水的生物修复:勒克斯生物报告仪在饱和多孔介质中监测萘的原位细菌分解代谢的应用

摘要

One attractive technology for restoration of hydrocarbon-contaminated groundwater is in situ bioremediation, a process where the degradative capacity of biological systems, usually bacteria, is harnessed to facilitate clean-up of environmental pollutants. However, the successful implementation of in situ bioremediation is contingent upon understanding how physicochemical and microbial factors affect the formation and dynamics of microbially active regions, known as bioactive zones (BAZs), in porous media. In this study, a novel, laboratory-scale fiber optic detection system was developed and employed to monitor real-time, in situ BAZ formation and dynamics during naphthalene transport in saturated porous media. Biological activity was measured non-destructively by detecting in situ bioluminescence from Pseudomonas putida RB1353, a naphthalene degrading, lux reporter organism. The first investigation focused on examining the impact of temperature, pH and initial cell number on P. putida RB1353's peak luminescence and V max during naphthalene catabolism. Statistical analyses based on general linear models indicated that temperature, pH, and initial substrate concentration accounted for 99.9% of the variability in luminescence during naphthalene catabolism. These results demonstrated that with careful characterization and standardization of measurement conditions, attainment of a reproducible luminescence response and an understanding of the response are feasible. The second investigation evaluated several potential limitations of the fiber optic detection system and the ability of the detection system to capture BAZ dynamics. The results indicated that the system is not adversely affected by biofilm formation on the optical fiber tips or by bioluminescence attenuation in the porous medium. Additionally, the utility of the detection system was demonstrated by effectively capturing the dynamics of in situ bacterial activity during naphthalene catabolism under changing physicochemical conditions. The third investigation employed the detection system to monitor real-time, in situ BAZ formation and dynamics during naphthalene transport in saturated porous media containing defined physicochemical and microbial heterogeneities. Despite successful transport of bacteria into sterile regions, BAZ formation was limited by local physicochemical conditions. Furthermore, bacterial transport against the advective flow enabled BAZ formation upgradient of inoculated regions. Ultimately, such investigations will improve the utility of in situ bioremediation by enhancing our understanding of BAZ dynamics in complex, heterogeneous systems.
机译:一种恢复碳氢化合物污染的地下水的有吸引力的技术是原位生物修复,该过程利用生物系统(通常是细菌)的降解能力来促进环境污染物的清除。但是,原位生物修复的成功实施取决于了解物理化学和微生物因素如何影响多孔介质中微生物活性区域(称为生物活性区(BAZ))的形成和动力学。在这项研究中,开发了一种新型的实验室规模的光纤检测系统,并将其用于监测萘在饱和多孔介质中传输过程中的实时,原位BAZ形成和动力学。通过检测恶臭假单胞菌RB1353(一种降解萘的勒克斯报道生物)的原位生物发光,可对生物活性进行非破坏性测量。首次研究的重点是检查温度,pH和初始细胞数对萘分解代谢过程中恶臭假单胞菌RB1353的峰值发光和V max的影响。根据一般线性模型进行的统计分析表明,温度,pH和初始底物浓度占萘分解代谢过程中发光变化的99.9%。这些结果表明,通过仔细表征和标准化测量条件,实现可再现的发光响应以及对响应的理解是可行的。第二项研究评估了光纤检测系统的一些潜在局限性以及检测系统捕获BAZ动态的能力。结果表明,该系统不受光纤尖端上生物膜形成或多孔介质中生物发光衰减的不利影响。另外,通过在变化的物理化学条件下有效捕获萘分解代谢过程中原位细菌活性的动力学,证明了该检测系统的实用性。第三次调查使用该检测系统来监测萘在含有确定的理化和微生物异质性的饱和多孔介质中进行萘运输过程中的实时,原位BAZ形成和动力学。尽管成功地将细菌转移到无菌区域,但BAZ的形成受到当地物理化学条件的限制。此外,对抗平流的细菌运输使接种区的BAZ形成升级。最终,此类研究将通过加深我们对复杂,异构系统中BAZ动力学的理解,从而提高原位生物修复的实用性。

著录项

  • 作者

    Dorn Jonathan Graves;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类
  • 入库时间 2022-08-31 15:20:11

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号