首页> 外文OA文献 >Manipulating and Probing Angular Momentum and Quantized Circulation in Optical Fields and Matter Waves
【2h】

Manipulating and Probing Angular Momentum and Quantized Circulation in Optical Fields and Matter Waves

机译:在光场和物质波中操纵和探测角动量和定量环流

摘要

Methods to generate, manipulate, and measure optical and atomic fields with global or local angular momentum have a wide range of applications in both fundamental physics research and technology development. In optics, the engineering of angular momentum states of light can aid studies of orbital angular momentum (OAM) exchange between light and matter. The engineering of optical angular momentum states can also be used to increase the bandwidth of optical communications or serve as a means to distribute quantum keys, for example. Similar capabilities in Bose-Einstein condensates are being investigated to improve our understanding of superfluid dynamics, superconductivity, and turbulence, the last of which is widely considered to be one of most ubiquitous yet poorly understood subjects in physics. The first part of this two-part dissertation presents an analysis of techniques for measuring and manipulating quantized vortices in BECs. The second part of this dissertation presents theoretical and numerical analyses of new methods to engineer the OAM spectra of optical beams. The superfluid dynamics of a BEC are often well described by a nonlinear Schrodinger equation. The nonlinearity arises from interatomic scattering and enables BECs to support quantized vortices, which have quantized circulation and are fundamental structural elements of quantum turbulence. With the experimental tools to dynamically manipulate and measure quantized vortices, BECs are proving to be a useful medium for testing the theoretical predictions of quantum turbulence. In this dissertation we analyze a method for making minimally destructive in situ observations of quantized vortices in a BEC. Secondly, we numerically study a mechanism to imprint vortex dipoles in a BEC. With these advancements, more robust experiments of vortex dynamics and quantum turbulence will be within reach. A more complete understanding of quantum turbulence will enable principles of microscopic fluid flow to be related to the statistical properties of turbulence in a superfluid. In the second part of this dissertation we explore frequency mixing, a subset of nonlinear optical processes in which one or more input optical beam(s) are converted into one or more output beams with different optical frequencies. The ability of parametric nonlinear processes such as second harmonic generation or parametric amplification to manipulate the OAM spectra of optical beams is an active area of research. In a theoretical and numerical investigation, two complimentary methods for sculpting the OAM spectra are developed. The first method employs second harmonic generation with two non-collinear input beams to develop a broad spectrum of OAM states in an optical field. The second method utilizes parametric amplification with collinear input beams to develop an OAM-dependent gain or attenuation, termed dichroism for OAM, to effectively narrow the OAM spectrum of an optical beam. The theoretical principles developed in this dissertation enhance our understanding of how nonlinear processes can be used to engineer the OAM spectra of optical beams and could serve as methods to increase the bandwidth of an optical signal by multiplexing over a range of OAM states.
机译:产生,操纵和测量具有整体或局部角动量的光场和原子场的方法在基础物理研究和技术开发中都有广泛的应用。在光学中,光的角动量状态的工程设计可以帮助研究光与物质之间的轨道角动量(OAM)交换。例如,光学角动量状态的工程还可用于增加光学通信的带宽,或用作分发量子密钥的手段。正在研究玻色-爱因斯坦凝聚物中的类似功能,以增进我们对超流体动力学,超导电性和湍流的理解,其中最后一个被广泛认为是物理学中最普遍但知之甚少的学科之一。这篇由两部分组成的论文的第一部分对BEC中测量和处理量化涡旋的技术进行了分析。本文的第二部分介绍了设计光束OAM光谱的新方法的理论和数值分析。 BEC的超流体动力学通常可以通过非线性Schrodinger方程很好地描述。非线性是由于原子间的散射引起的,并使BEC能够支持量化的涡旋,这些涡旋具有量化的环流,是量子湍流的基本结构要素。利用实验工具动态地操纵和测量量化的涡流,BEC被证明是检验量子湍流理论预测的有用介质。在本文中,我们分析了一种在BEC中对涡旋进行最小破坏性原位观测的方法。其次,我们在数值上研究了在BEC中压印涡流偶极子的机制。有了这些进步,涡旋动力学和量子湍流的更强大的实验将触手可及。对量子湍流的更完整理解将使微观流体流动的原理与超流体中湍流的统计特性相关。在本文的第二部分中,我们探讨了频率混合,这是非线性光学过程的子集,其中一个或多个输入光束被转换为具有不同光频率的一个或多个输出光束。参数非线性过程(例如二次谐波生成或参数放大)操纵光束OAM光谱的能力是研究的活跃领域。在理论和数值研究中,开发了两种用于雕刻OAM光谱的互补方法。第一种方法采用二次谐波和两个非共线输入光束的产生,以在光场中产生广谱的OAM状态。第二种方法利用共线输入光束的参量放大来开发OAM依赖的增益或衰减(称为OAM的二色性),以有效地缩小光束的OAM光谱。本文提出的理论原理增强了我们对如何使用非线性过程来设计光束的OAM光谱的理解,并且可以用作通过在一定范围内的OAM状态进行复用来增加光信号带宽的方法。

著录项

  • 作者

    Lowney Joseph Daniel;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号