首页> 外文OA文献 >Fractal and numerical models of explosive rock fragmentation.
【2h】

Fractal and numerical models of explosive rock fragmentation.

机译:爆炸性岩石破碎的分形和数值模型。

摘要

Present study concentrates primarily on radial crack propagation by the explosive gas pressure and the associated fracture formation, and on estimating the effects of natural discontinuities on rock fragmentation in bench blasting. Boundary element and finite element methods coupled with fracture mechanics theories are used to study the crack propagation. Fractal geometry principles are used to study the effect of natural discontinuities. Predicted stresses from conventional bench blasting model without any radial crack differ little from those around a pressurized hole in an infinite medium. Contrary to field observations, the radially symmetric stress field predicts a thin failed zone concentric with the hole. A loading rate dependent model, developed considering microflaws, suggest only long micro fractures become the radial cracks. The biaxial compression zone at the side of a radial crack suppresses smaller cracks. Other cracks can grow beyond this zone. Some die as the cracks become pressurized. Tensile σ₃ outside this zone peaks near the crack tip. A biaxial tension zone forms ahead of the crack tip. A multicrack model of bench blasting is developed. Biaxial compression zone forms near the hole. σ₃ is tensile outside this zone and peaks near the crack tips. Numerous tensile fractures form in these regions. Tensile fractures continue to form with radial crack growth and existing fractures grow in sliding. Stress redistribution around the fractures produces second and lower order fractures. These fractures break rock between the radial cracks. Pressurization of radial cracks is essential to propagate them for longer distances and to form associated fractures for further breakage of burden. The beam bending model produces unrealistically large burden displacement. The equivalent cavity hypothesis correctly estimates the stresses beyond the radial cracks but ignores the radial crack propagation and the associated breakage. It predicts a failed region concentric with the hole. The effect of natural discontinuities on fragmentation is determined by comparing the Schuhmann size distribution curves of the blasted fragments and the in-situ blocks. In-situ block and after blast fragments sizes, measured from photographs, are fractal which is analogous to Schuhmann Distribution. Exploiting the fractal characteristics eliminates the problems associated with size determination. Automated data reduction processes can make this method very powerful for routine monitoring and design optimization of blasts. Discontinuity pattern, fracture density, block density, fault structure, and microcracks in laboratory specimens are also fractal. Fractal behavior at microscale (10⁻⁶ m) to megascale (10⁵ m) implies Self-similar rock fracture formation. The fractal dimension may be related to the applied stress field.
机译:目前的研究主要集中在爆炸压力和相关裂缝形成下的径向裂纹扩展上,以及在台爆过程中估算自然不连续性对岩石碎裂的影响。边界元和有限元方法结合断裂力学理论被用于研究裂纹扩展。分形几何原理用于研究自然不连续性的影响。在没有任何径向裂纹的情况下,常规台式喷砂模型的预测应力与无限介质中加压孔周围的应力几乎没有差异。与现场观察相反,径向对称应力场预测与孔同心的薄破坏区。考虑到微缺陷而开发的依赖于加载速率的模型表明,只有较长的微裂缝才成为径向裂缝。径向裂纹一侧的双轴压缩区可抑制较小的裂纹。其他裂缝可能会超出该区域。随着裂缝受压,一些模具死亡。该区域外的拉伸σ₃在裂纹尖端附近达到峰值。在裂纹尖端之前形成一个双轴拉伸区。建立了台式爆破的多裂纹模型。在孔附近形成双轴压缩区。 σ₃在该区域之外为拉伸强度,并在裂纹尖端附近达到峰值。在这些区域中形成许多拉伸断裂。随着径向裂纹的增长,拉伸断裂继续形成,并且现有的断裂以滑动的形式增长。裂缝周围的应力重新分布会产生二阶和低阶裂缝。这些裂缝使径向裂缝之间的岩石破裂。径向裂缝的加压对于使其传播更长的距离并形成相关的裂缝以进一步减轻负担至关重要。梁弯曲模型产生不切实际的大负荷位移。等效腔假设正确地估计了径向裂纹以外的应力,但忽略了径向裂纹的扩展和相关的破裂。它可以预测与孔同心的失效区域。通过比较喷砂碎片和原位块的Schuhmann尺寸分布曲线,确定自然不连续性对碎片的影响。从照片测量的原位块和爆炸后碎片的大小是分形的,类似于Schuhmann分布。利用分形特征消除了与尺寸确定相关的问题。自动化的数据缩减过程可使该方法在爆炸的常规监视和设计优化中非常强大。实验室标本中的间断模式,裂缝密度,块密度,断层结构和微裂纹也是分形的。从微观尺度(10μm)到兆尺度(10μm)的分形行为暗示了自相似岩石破裂的形成。分形维数可能与施加的应力场有关。

著录项

  • 作者

    Ghosh Amitava.;

  • 作者单位
  • 年度 1990
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号