首页> 外文OA文献 >In-Situ Calibration of Nonuniformity in Infrared Staring and Modulated Systems
【2h】

In-Situ Calibration of Nonuniformity in Infrared Staring and Modulated Systems

机译:红外凝视和调制系统中非均匀性的原位校准

摘要

Infrared cameras can directly measure the apparent temperature of objects, providing thermal imaging. However, the raw output from most infrared cameras suffers from a strong, often limiting noise source called nonuniformity. Manufacturing imperfections in infrared focal planes lead to high pixel-to-pixel sensitivity to electronic bias, focal plane temperature, and other effects. In turn, different pixels within the focal plane array give a drastically different electronic response to the same irradiance. The resulting imagery can only provide useful thermal imaging after a nonuniformity calibration has been performed. Traditionally, these calibrations are performed by momentarily blocking the field of view with a flat temperature plate or blackbody cavity. However because the pattern is a coupling of manufactured sensitivities with operational variations, periodic recalibration is required, sometimes on the order of tens of seconds. A class of computational methods called Scene-Based Nonuniformity Correction (SBNUC) has been researched for over 20 years where the nonuniformity calibration is estimated in digital processing by analysis of the video stream in the presence of camera motion. The most sophisticated SBNUC methods can completely and robustly eliminate the high-spatial frequency component of nonuniformity with only an initial reference calibration or potentially no physical calibration. I will demonstrate a novel algorithm that advances these SBNUC techniques to support all spatial frequencies of nonuniformity correction. Long-wave infrared microgrid polarimeters are a class of camera that incorporate a microscale per-pixel wire-grid polarizer directly affixed to each pixel of the focal plane. These cameras have the capability of simultaneously measuring thermal imagery and polarization in a robust integrated package with no moving parts. I will describe the necessary adaptations of my SBNUC method to operate on this class of sensor as well as demonstrate SBNUC performance in LWIR polarimetry video collected on the UA mall.
机译:红外热像仪可以直接测量物体的视在温度,从而提供热成像。但是,大多数红外热像仪的原始输出会受到强烈的,通常是有限的噪声源(称为不均匀性)的困扰。红外焦平面中的制造缺陷导致对电子偏置,焦平面温度和其他影响的高像素间灵敏度。继而,焦平面阵列内的不同像素对相同的辐照度产生截然不同的电子响应。在执行了不均匀性校准之后,所得图像只能提供有用的热成像。传统上,通过使用平坦的温度板或黑体腔暂时遮挡视场来执行这些校准。但是,由于图案是制造灵敏度与操作变化的耦合,因此需要定期重新校准,有时需要数十秒。二十多年来,人们研究了一类称为基于场景的不均匀性校正(SBNUC)的计算方法,其中在存在相机运动的情况下通过分析视频流在数字处理中估计不均匀性校准。最复杂的SBNUC方法仅通过初始参考校准或可能不进行物理校准即可完全,可靠地消除非均匀性的高空间频率分量。我将演示一种新颖的算法,该算法将改进这些SBNUC技术,以支持所有非均匀性校正的空间频率。长波红外微栅格旋光仪是一类照相机,其中包含直接固定在焦平面每个像素上的微型每像素线栅偏振片。这些摄像机具有在没有移动部件的坚固集成包装中同时测量热成像和偏振的能力。我将描述我的SBNUC方法的必要适应方法,以对此类传感器进行操作,并在UA购物中心收集的LWIR偏振视频中演示SBNUC性能。

著录项

  • 作者

    Black Wiley T.;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号