首页> 外文OA文献 >Non-null interferometer for measurement of transmitted aspheric wavefronts
【2h】

Non-null interferometer for measurement of transmitted aspheric wavefronts

机译:非零干涉仪,用于测量透射非球面波阵面

摘要

In order to better facilitate the use of aspheres in optical design, metrology systems must become independent from the asphere under test. This requires testing in a non-null sense. Large aspheric departures and steep wavefront slopes must be detected by the metrology instrument. Sub-Nyquist interferometry (SNI) is one such method which has been shown to reconstruct large wavefront departures. Large departures generate high spatial frequency fringes, which must be detected by the interferometer. This requires the use of a sparse array sensor to capture the high spatial frequency fringe data. A custom detector for this purpose has been developed and tested over spatial frequencies up to 400 cycles/mm. Testing in a non-null manner causes the test and reference rays in the interferometer to follow different optical paths through the system. The errors generated by this difference are test part dependent and must be calibrated independently for each test piece. Lens design software can be used to perform reverse optimization of the interferometer and data. This process requires an accurate interferometer model and is sensitive to the relative weighting of the various merit function targets. An iterative reverse optimization process has been developed which eliminates the weighting sensitivity and improves the optimization efficiency. The implementation of reverse optimization in turn generates constraints on the interferometer design. The class of aspheres to be tested also influences the system design. These factors lead to constraints on lens parameters, system apertures, and component verification considerations. A Mach-Zehnder interferometer is designed which satisfies the requirements and is used to build a transmitted wavefront SNI system. Experiments on several test parts were performed to verify the iterative reverse optimization process and to extend the use of SNI to non-rotationally symmetric aspheric wavefronts. Wedge angles were measured to within 1.5 arcseconds, radii of curvature to 0.1% and wavefront departures of up to 200λ were characterized to λ/6 PV and λ/47 rms. The reverse optimization process was shown to successfully remove up to 25 of induced aberration from an aspheric measurement. The results indicate potential for application of the iterative method and its associated design constraints to new interferometers for aspheric testing.
机译:为了更好地促进在光学设计中使用非球面镜,计量系统必须独立于被测非球面镜。这需要非空的测试。大的非球面偏差和陡峭的波前坡度必须通过计量仪器检测出来。次奈奎斯特干涉法(SNI)是一种这样的方法,已被证明可以重建大的波前偏差。较大的偏离会产生高空间频率条纹,必须由干涉仪检测到。这需要使用稀疏阵列传感器来捕获高空间频率条纹数据。为此目的开发了一种定制检测器,并在高达400个循环/毫米的空间频率上进行了测试。以非零方式进行测试会导致干涉仪中的测试光线和参考光线遵循通过系统的不同光路。由这种差异产生的误差取决于测试部件,并且必须针对每个测试件独立地进行校准。镜头设计软件可用于对干涉仪和数据进行反向优化。此过程需要一个准确的干涉仪模型,并且对各种优值功能目标的相对权重敏感。已经开发了一种迭代反向优化过程,该过程消除了加权敏感性并提高了优化效率。反向优化的实施反过来对干涉仪的设计产生了限制。要测试的非球面的种类也会影响系统设计。这些因素导致对镜头参数,系统光圈和组件验证方面的限制。设计了满足要求的马赫曾德尔干涉仪,并用于构建发射波前SNI系统。在几个测试部分上进行了实验,以验证迭代反向优化过程,并将SNI的使用扩展到非旋转对称的非球面波阵面。测得的楔角在1.5弧秒以内,曲率半径为0.1%,波前偏差高达200λ的特征是λ/ 6 PV和λ/ 47 rms。结果表明,反向优化过程可以成功地从非球面测量中消除多达25个感应像差。结果表明,将迭代方法及其相关的设计约束条件应用到用于非球面测试的新型干涉仪中的潜力。

著录项

  • 作者

    Gappinger Robert Orvin;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号