首页> 外文OA文献 >Scalable Computational Optical Imaging System Designs
【2h】

Scalable Computational Optical Imaging System Designs

机译:可扩展计算光学成像系统设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational imaging and sensing leverages the joint-design of optics, detectors and processing to overcome the performance bottlenecks inherent to the traditional imaging paradigm. This novel imaging and sensing design paradigm essentially allows new trade-offs between the optics, detector and processing components of an imaging system and enables broader operational regimes beyond the reach of conventional imaging architectures, which are constrained by well-known Rayleigh, Strehl and Nyquist rules amongst others.udIn this dissertation, we focus on scalability aspects of these novel computational imaging architectures, their design and implementation, which have far-reaching impacts on the potential and feasibility of realizing task-specific performance gains relative to traditional imager designs. For the extended depth of field (EDoF) computational imager design, which employs a customized phase mask to achieve defocus immunity, we propose a joint-optimization framework to simultaneously optimize the parameters of the optical phase mask and the processing algorithm, with the system design goal of minimizing the noise and artifacts in the final processed image. Using an experimental prototype, we demonstrate that our optimized system design achieves higher fidelity output compared to other static designs from the literature, such as the Cubic and Trefoil phase masks.udWhile traditional imagers rely on an isomorphic mapping between the scene and the optical measurements to form images, they do not exploit the inherent compressibility of natural images and thus are subject to Nyquist sampling. Compressive sensing exploits the inherent redundancy of natural images, basis of image compression algorithms like JPEG/JPEG2000, to make linear projection measurements with far fewer samples than Nyquist for the image forming task. Here, we present a block wise compressive imaging architecture which is scalable to high space-bandwidth products (i.e. large FOV and high resolution applications) and employs a parallelizable and non-iterative piecewise linear reconstruction algorithm capable of operating in real-time. Our compressive imager based on this scalable architecture design is not limited to the imaging task and can also be used for automatic target recognition (ATR) without an intermediate image reconstruction. To maximize the detection and classification performance of this compressive ATR sensor, we have developed a scalable statistical model of natural scenes, which enables the optimization of the compressive sensor projections with the Cauchy-Schwarz mutual information metric. We demonstrate the superior performance of this compressive ATR system using simulation and experiment.udFinally, we investigate the fundamental resolution limit of imaging via the canonical incoherent quasi-monochromatic two point-sources separation problem. We extend recent results in the literature demonstrating, with Fisher information and estimator mean square error analysis, that a passive optical mode-sorting architecture with only two measurements can outperform traditional intensity-based imagers employing an ideal focal plane array in the sub-Rayleigh range, thus overcoming the Rayleigh resolution limit.
机译:计算成像和传感利用光学,检测器和处理的联合设计来克服传统成像范式固有的性能瓶颈。这种新颖的成像和传感设计范例实质上允许在成像系统的光学器件,检测器和处理组件之间进行新的取舍,并实现了不受传统成像体系结构影响的更广泛的操作范围,而传统成像体系结构则受到了著名的Rayleigh,Strehl和Nyquist的限制在本文中,我们集中于这些新颖的计算成像架构的可扩展性方面,其设计和实现,这些方面对实现相对于传统成像仪设计的特定任务性能提升的潜力和可行性具有深远的影响。对于采用定制相位掩模实现散焦抗扰度的扩展景深(EF)计算成像器设计,我们提出了一种联合优化框架,可同时优化光学相位掩模的参数和处理算法,并采用系统设计目标是最大程度地减少最终处理图像中的噪声和伪影。通过使用实验原型,我们证明了与文献中的其他静态设计(例如Cubic和Trefoil相位掩模)相比,我们优化的系统设计可实现更高的保真度输出。 ud尽管传统的成像仪依赖于场景和光学测量之间的同构映射为了形成图像,它们没有利用自然图像的固有可压缩性,因此需要进行奈奎斯特采样。压缩感测利用诸如JPEG / JPEG2000之类的图像压缩算法的基础上的自然图像的固有冗余,以进行线性投影测量时所用的样本数量远少于用于图像形成任务的奈奎斯特样本。在这里,我们提出了一种可扩展到高空间带宽产品(即大型FOV和高分辨率应用)的逐块压缩成像体系结构,并采用了能够实时操作的可并行化且非迭代的分段线性重建算法。我们基于这种可扩展体系结构设计的压缩成像仪不仅限于成像任务,还可以用于自动目标识别(ATR),而无需中间图像重建。为了最大程度地提高这种压缩ATR传感器的检测和分类性能,我们开发了一种可扩展的自然场景统计模型,该模型可以使用Cauchy-Schwarz互信息度量标准来优化压缩传感器的投影。通过仿真和实验,我们证明了该压缩式ATR系统的优越性能。 ud最后,我们通过规范的非相干准单色两点源分离问题研究了成像的基本分辨率极限。我们利用Fisher信息和估计器均方误差分析扩展了文献中的最新结果,证明仅进行两次测量的无源光学模式分类架构就可以胜过采用次瑞利范围内理想焦平面阵列的传统基于强度的成像仪,从而克服了瑞利分辨率的限制。

著录项

  • 作者

    Kerviche Ronan;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号