首页> 外文OA文献 >Automatic Detection, Segmentation and Tracking of Vehicles in Wide-Area Aerial Imagery
【2h】

Automatic Detection, Segmentation and Tracking of Vehicles in Wide-Area Aerial Imagery

机译:广域航拍图像中车辆的自动检测,分割和跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Object detection is crucial for many research areas in computer vision, image analysis and pattern recognition. Since vehicles in wide-area images appear with variable shape and size, illumination changes, partial occlusion, and background clutter, automatic detection has often been a challenging task. We present a brief study of various techniques for object detection and image segmentation, and contribute to a variety of algorithms for detecting vehicles in traffic lanes from two low-resolution aerial video datasets. We present twelve detection algorithms adapted from previously published work, and we propose two post-processing schemes in contrast to four existing schemes to reduce false detections. We present the results of several experiments for quantitative evaluation by combining detection algorithms before and after using a post-processing scheme. Manual segmentation of each vehicle in the cropped frames serves as the ground truth. We classify several types of detections by comparing the binary detection output to the ground truth in each frame, and use two sets of evaluation metrics to measure the performance. A pixel classification scheme is also derived for spatial post-processing applied to seven detection algorithms, among which two algorithms are selected for sensitivity analysis with respect to a range of overlap ratios. Six tracking algorithms are selected for performance analysis for overall accuracy under four different scenarios for sample frames in Tucson dataset.
机译:对象检测对于计算机视觉,图像分析和模式识别的许多研究领域至关重要。由于广域图像中的车辆具有可变的形状和大小,照明变化,部分遮挡和背景混乱,因此自动检测通常是一项艰巨的任务。我们对各种对象检测和图像分割技术进行了简要研究,并为从两个低分辨率航空视频数据集检测交通车道中的车辆的各种算法做出了贡献。我们提出了十二种从先前发表的工作改编的检测算法,并且相对于四个减少误检测的现有方案,我们提出了两种后处理方案。我们通过结合使用后处理方案之前和之后的检测算法,提出了一些定量评估实验的结果。在裁剪帧中手动分割每辆车是事实。我们通过将二进制检测输出与每个帧中的地面真实情况进行比较,对几种类型的检测进行分类,并使用两组评估指标来衡量性能。还导出了一种像素分类方案,用于应用于7种检测算法的空间后处理,其中针对重叠率范围选择了两种算法进行灵敏度分析。在图森数据集中的样本帧的四种不同情况下,选择了六种跟踪算法进行性能分析,以提高整体准确性。

著录项

  • 作者

    Gao Xin;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号