首页> 外文OA文献 >Optimization of multi-scale decision-oriented dynamic systems and distributed computing
【2h】

Optimization of multi-scale decision-oriented dynamic systems and distributed computing

机译:多尺度面向决策的动态系统和分布式计算的优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this dissertation, a stochastic programming model is presented for multi-scale decision-oriented dynamic systems (DODS) which are discrete-time systems in which decisions are made according to alternative discrete-time sequences which depend upon the organizational layer within a hierarchical system. A multi-scale DODS consists of multiple modules, each of which makes decisions on a time-scale that matches their specific task. For instance, in a large production planning system, the aggregate planning module may make decisions on a quarterly basis, whereas, weekly, and daily planning may use short-term scheduling models. In order to avoid mismatches between these schedules, it is important to integrate the short-term and long-term models. In studying models that accommodate multiple time-scales, one of the challenges that must be overcome is the incorporation of uncertainty. For instance, aggregate production planning is carried out several months prior to obtaining accurate demand estimates. In order to make decisions that are cognizant of uncertainty, we propose a stochastic programming model for the multi-scale DODS. Furthermore, we propose a modular algorithm motivated by the column generation decomposition strategy. The convergence of this modular algorithm is also demonstrated. Our experimental results demonstrate that the modular algorithm is robust in solving large-scale multi-scale DODS problems under uncertainty. Another main issue addressed in this dissertation is the application of the above modeling method and solution technique to decision aids for scheduling and hedging in a deregulated electricity market (DASH). The DASH model for power portfolio optimization provides a tool which helps decision-makers coordinate production decisions with opportunities in the wholesale power market. The methodology is based on a multi-scale DODS. This model selects portfolio positions for electricity and fuel forwards, while remaining cognizant of spot market prices, and generation costs. When compared with a commonly used fixed-mix policy, our experiments demonstrate that the DASH model provides significant advantages over fixed-mix policies. Finally, a multi-level distributed computing system is designed in a manner that implements the nested column generation decomposition approach for multi-scale decision-oriented dynamic systems based on a nested column generation decomposition approach. The implementation of a three-level distributed computing system is discussed in detail. The computational experiments are based on a large-scale real-world problem arising in power portfolio optimization. The deterministic equivalent LP for this instance with 200 scenarios has over one million constraints. Our computational results illustrate the effectiveness of this distributed computing approach.
机译:本文针对多尺度面向决策的动态系统(DODS),提出了一种随机规划模型,该系统是离散时间系统,根据层次结构系统中的组织层,根据替代的离散时间序列进行决策。 。一个多尺度的DODS由多个模块组成,每个模块都根据与其特定任务相匹配的时间尺度做出决策。例如,在大型生产计划系统中,汇总计划模块可以按季度制定决策,而每周和每日计划可以使用短期计划模型。为了避免这些时间表之间的不匹配,重要的是要整合短期和长期模型。在研究适应多个时间尺度的模型时,必须克服的挑战之一是不确定性的纳入。例如,在获得准确的需求估算之前的几个月中就进行了总生产计划。为了做出能够确定不确定性的决策,我们提出了多尺度DODS的随机规划模型。此外,我们提出了一种基于列生成分解策略的模块化算法。还演示了该模块化算法的收敛性。我们的实验结果表明,该模块化算法在不确定性下能够解决大规模多尺度DODS问题。本文所要解决的另一个主要问题是上述建模方法和解决方案技术在电力市场放松管制(DASH)中用于调度和对冲的决策辅助工具的应用。用于电力组合优化的DASH模型提供了一种工具,可帮助决策者将生产决策与批发电力市场中的机会进行协调。该方法基于多尺度DODS。该模型选择电力和燃料远期的投资组合头寸,同时仍能了解现货市场价格和发电成本。当与常用的固定混合策略进行比较时,我们的实验表明DASH模型比固定混合策略具有明显的优势。最后,设计了一种多级分布式计算系统,该系统为基于嵌套列生成分解方法的多尺度面向决策的动态系统实现了嵌套列生成分解方法。详细讨论了三级分布式计算系统的实现。计算实验基于电力组合优化中出现的大规模现实问题。此实例具有200个场景的确定性等效LP具有超过一百万个约束。我们的计算结果说明了这种分布式计算方法的有效性。

著录项

  • 作者

    Yu Lihua;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号