首页> 外文OA文献 >Tune-out Wavelength Measurement and Gyroscope Using Dispersion Compensation in an Atom Interferometer
【2h】

Tune-out Wavelength Measurement and Gyroscope Using Dispersion Compensation in an Atom Interferometer

机译:在原子干涉仪中使用色散补偿进行微调波长测量和陀螺仪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This Dissertation describes how I used a three nanograting Mach-Zehnder atom beam interferometer to precisely measure a wavelength of light, known as a tune-out wavelength, that causes zero energy shift for an atom. I also describe how such measurements can be remarkably sensitive to rotation rates. It is well known that atom interferometry can be used to measure accelerations and rotations, but it was a surprise to find out that tune-out wavelength measurements can under certain conditions be used to report the absolute rotation rate of the laboratory with respect to an inertial frame of reference. I also describe how we created conditions which improve the accuracy of tune out wavelength measurements. These measurements are important because they serve as a benchmark test for atomic structure calculations of line strengths, oscillator strengths, and dipole matrix elements. I present a new measurement of the longest tune-out wavelength in potassium, λzero = 768.9701(4) nm. To reach sub-picometer precision, an optical cavity surrounding the atom beam paths of the interferometer was used. Although this improved the precision of our experiment by increasing the light-induced phase shifts, the cavity also brought several systematic errors to our attentions. For example, I found that large ±200 pm shifts in tune-out wavelengths can occur due to the Earth's rotation rate. To solve this problem, I demonstrated that controlling the optical polarization, the magnetic field, and the atom beam velocity distribution can either suppress or enhance these systematic shifts. Suppressing these systemic shifts in tune-out wavelengths is useful for precision measurements used to test atomic structure calculations. By enhancing these systematic shifts, the interferometer can be a gyroscope that utilizes tune-out wavelengths.
机译:本论文描述了我如何使用三纳米Mach-Zehnder原子束干涉仪来精确测量光的波长(称为调出波长),该波长导致原子的能量偏移为零。我还描述了这种测量如何对旋转速率非常敏感。众所周知,原子干涉法可用于测量加速度和旋转,但令人惊讶的是发现调出波长测量值可在某些条件下用于报告实验室相对于惯性的绝对旋转速率参照系。我还将描述我们如何创建条件来提高调出波长测量的准确性。这些测量非常重要,因为它们可作为基准强度测试来计算线强度,振荡器强度和偶极矩阵元素的原子结构。我提出了最长的调出波长钾的新测量值,λzero= 768.9701(4)nm。为了达到亚皮秒计的精度,使用了围绕干涉仪原子束路径的光学腔。尽管这通过增加光诱导的相移提高了我们的实验精度,但腔体也给我们带来了一些系统误差。例如,我发现由于地球的自转速率,调出波长可能发生±200 pm的大偏移。为了解决这个问题,我证明了控制光学偏振,磁场和原子束速度分布可以抑制或增强这些系统偏移。抑制调出波长的这些系统性变化对于用于测试原子结构计算的精确测量非常有用。通过增强这些系统的偏移,干涉仪可以成为利用调出波长的陀螺仪。

著录项

  • 作者

    Trubko Raisa;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号