首页> 外文OA文献 >An Autonomic Workflow Performance Manager for Weather Forecast and Research Modeling Workflows
【2h】

An Autonomic Workflow Performance Manager for Weather Forecast and Research Modeling Workflows

机译:用于天气预报和研究建模工作流程的自主工作流程绩效管理器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Parameter selection is a critical task in scientific workflows in order to maintain the accuracy of the simulation in an environment where physical conditions change dynamically such as in the case of weather research and forecast simulations. Currently, Numerical Weather Prediction (NWP) is the premier method for weather prediction, which is used by the National Oceanic and Atmospheric Administration (NOAA). It takes the current observations from observed sites as the input for numeric computer models and then produces the final prediction. Considering the large number of simulation parameters, the size of the configuration search space becomes prohibitive for rapidly evaluating and identifying the parameter configuration that leads to most accurate prediction. In this thesis, we develop an Autonomic Workflow Performance Manager (AWPM) for Hurricane Integrated Modeling System (HIMS). AWPM is implemented on top of the Apache Storm and ZooKeeper to handle multiple real-time data streams for weather forecast. AWPM can automatically manage model initialization and execution workflow and achieve better performance and efficiency. In our experiments, AWPM achieves better performance and efficiency for the model initialization and execution processes, by utilizing automatic computing, distributed computing and component-based development. We reduced the timescale of the configuration search workflow by a factor of 10 by using 20 threads with the full search method, and a factor of 20 by with the roofline method when compared to serial workflow execution as it is typically performed by domain scientists.
机译:参数选择对于科学工作流程中的一项关键任务,是要在物理条件动态变化的环境(例如天气研究和天气预报模拟)中保持模拟的准确性。当前,数值天气预报(NWP)是用于天气预报的主要方法,美国国家海洋和大气管理局(NOAA)使用了该方法。它将来自观测点的当前观测值作为数字计算机模型的输入,然后生成最终预测。考虑到大量的仿真参数,配置搜索空间的大小对于快速评估和识别导致最准确预测的参数配置变得无法实现。在本文中,我们开发了针对飓风集成建模系统(HIMS)的自主工作流程绩效管理器(AWPM)。 AWPM在Apache Storm和ZooKeeper之上实现,以处理多个实时数据流以进行天气预报。 AWPM可以自动管理模型初始化和执行工作流程,并获得更好的性能和效率。在我们的实验中,AWPM通过利用自动计算,分布式计算和基于组件的开发,为模型初始化和执行过程提供了更好的性能和效率。与领域工作人员通常执行的串行工作流执行相比,通过使用20条完整搜索方法的线程,将配置搜索工作流的时间尺度减少了10倍,而使用roofline方法将配置搜索工作流的时间缩减了20倍。

著录项

  • 作者

    Gu Shuqing;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号