首页> 外文OA文献 >Molecular Design of Electrode Surfaces and Interfaces: For Optimized Charge Transfer at Transparent Conducting Oxide Electrodes and Spectroelectrochemical Sensing
【2h】

Molecular Design of Electrode Surfaces and Interfaces: For Optimized Charge Transfer at Transparent Conducting Oxide Electrodes and Spectroelectrochemical Sensing

机译:电极表面和界面的分子设计:用于优化在透明导电氧化物电极上的电荷转移和光谱电化学传感

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation has focused on i) optimizing charge transfer rates at indium-tinoxide (ITO) electrodes, and ii) characterization of the supramolecular structure and properties of ultra thin surface modifier films on modified electrodes for various device applications. Commercial ITO surfaces were modified using conducting polymer thin film architectures with and without various chemical activation procedures. Ferrocene derivatives were used as redox probes, which showed dramatic changes in electron transfer rate as the SA-PANI/PAA layers were added to the ITO surface. Highest rates of electron transfer were observed for DMFc, whose oxidation potential coincides with the potential region where these SA-PANI/PAA films reach their optimal electroactivity. Apparent heterogeneous electron transfer rate constants, kS, measured voltammetrically, were ca.10 x higher for SA-PANI/PAA films on ITO, versus clean ITO substrates. These films also showed linear potentiometric responses with retention of the ITO transparency with the capability to create smoothest films using an aqueous deposition protocol, which proved important in other applications. ITO electrodes were also modified via chemisorption of carboxy functionalized EDOTCA and electropolymerization of PEDOTCA/PEDOT copolymers, when properly optimized for thickness and structure, enhance voltammetrically determined electron transfer rates (kS) to solution probe molecules, such as dimethylferrocene (DMFc). Values of kS ≥ 0.4 cm•sec⁻¹, were determined, approaching rates seen on clean gold surfaces. ITO activation combined with formation of these co-polymer films has the effect of enhancing the electroactive fraction of electrode surface, versus a non-activated, unmodified ITO electrode, which acts as a “blocked” electrode. The electroactivity and spectroelectrochemistry of these films helped to resolve the electron transfer rate mechanism and enabled the construction of models in combination with AFM, XPS, UPS and RAIRS studies. The surface topography, structure, composition, work function and contact angle, also revealed other desirable properties for molecular electronic devices. The carboxylic functionality of the EDOTCA molecule adds more desirable properties compared to normal PEDOT films, such as favoring the deposition of smooth films, increasing the optical contrast, participating in hydrogen-bonding, chemisorption to oxide surface, self-doping and providing a linker for incorporation of different functional groups, new molecules, or nanoparticles. Periodic sub-micron electrode arrays can be created using micro-contact printing and electropolymerization. The sinusoidal modulation of the refractive index of such confined conducting polymer nanostructures or nanoparticle stripes allows efficient visible light diffraction. The modulation of the diffraction efficiency at PANI and PEDOT gratings in the presence of an analytical stimulus such as pH or potential demonstrate the sensing capability at these surfaces. The template stripped gold surfaces that are being developed in our lab demonstrate several advantages over commercially available evaporated gold films especially for nanoscale surface modification.
机译:本论文着重于:i)优化铟锡氧化物(ITO)电极上的电荷转移速率,以及ii)表征用于各种器件应用的改性电极上的超薄表面改性剂膜的超分子结构和性质。使用具有和不具有各种化学活化程序的导电聚合物薄膜结构来修饰商业ITO表面。二茂铁衍生物用作氧化还原探针,当SA-PANI / PAA层添加到ITO表面时,它显示出电子传输速率的巨大变化。对于DMFc,观察到最高的电子转移速率,其氧化电势与这些SA-PANI / PAA膜达到其最佳电活性的电势区域一致。用伏安法测得的表观异质电子传输速率常数kS,与干净的ITO基板相比,在ITO上的SA-PANI / PAA膜大约高10倍。这些薄膜还显示出线性电位响应,并保留了ITO透明性,并具有使用水相沉积方案形成最光滑薄膜的能力,这在其他应用中也很重要。 ITO电极还可以通过羧基官能化EDOTCA的化学吸附和PEDOTCA / PEDOT共聚物的电聚合进行修饰,如果对厚度和结构进行了适当优化,则可以提高伏安法确定的向溶液探针分子(如二甲基二茂铁(DMFc))的电子传递速率(kS)。确定kS≥0.4 cm•sec -1的值,接近在纯金表面上看到的速率。 ITO活化与这些共聚物膜的形成相结合,具有增强电极表面电活性分数的作用,这与未活化,未改性的ITO电极(充当“阻隔”电极)相比有所提高。这些薄膜的电活性和光谱电化学有助于解决电子传递速率机理,并与AFM,XPS,UPS和RAIRS研究相结合来构建模型。表面形貌,结构,组成,功函数和接触角也揭示了分子电子器件的其他所需特性。与普通的PEDOT膜相比,EDOTCA分子的羧基官能团增加了更理想的性能,例如有利于光滑膜的沉积,增加了光学对比度,参与氢键,化学吸附到氧化物表面,自掺杂并提供了用于不同官能团,新分子或纳米粒子的结合。可以使用微接触印刷和电聚合来创建周期性的亚微米电极阵列。这种受限的导电聚合物纳米结构或纳米颗粒条纹的折射率的正弦调制允许有效的可见光衍射。在存在诸如pH或电位之类的分析刺激的情况下,在PANI和PEDOT光栅上对衍射效率的调制证明了在这些表面的传感能力。我们实验室正在开发的模板剥离的金表面表现出优于市售蒸发的金膜的多个优势,尤其是用于纳米级表面修饰。

著录项

  • 作者

    Marikkar Fathima Saneeha;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号