首页> 外文OA文献 >Hybrid Atomic-Optomechanical Systems -- Observing Quantum Effects in Macroscopic Oscillators
【2h】

Hybrid Atomic-Optomechanical Systems -- Observing Quantum Effects in Macroscopic Oscillators

机译:混合原子光机系统-观察宏观振荡器中的量子效应

摘要

This thesis concentrates on generating and measuring non-classical states of mechanical oscillators by coupling them to atomic and molecular quantum systems. We start with a discussion of what novel physics can be explored by mechanical systems operating in the quantum regime. We then discuss one technique making it a possibility- cavity optomechanics, particularly optomechanical cooling. We investigate the limits of optomechanical cooling and review how the coupling of mechanical oscillators to external heat baths limits the minimum attainable phonon occupation number. As a possible alternative for circumventing clamping losses, we consider an all-optical approach where the mechanical element (in this case, a Bragg mirror) is suspended via optical forces, and discuss some limitations of this approach. We explore several schemes aimed at the generation of quantum states in mechanical oscillators. We consider specifically two examples: one in which the mechanical oscillator is coupled to polar molecules via dipole-dipole interaction, and another where it is magnetically coupled to a Bose condensate. The first example emphasizes that such an interaction can generate parametric squeezing and entanglement. The second scheme demonstrates that the back action of BEC spin measurements can be used to generate quantum states of motion of a mechanical oscillator. We then discuss possible methods for measuring the entire density matrix of a mechanical oscillator. The first method achieves the tomographic reconstruction of the mechanical Wigner function by coupling it simultaneously to a classical optical oscillator and a qubit. The second approach involves a state transfer scheme between momentum excitations of a bose-condensate in a cavity and a moving mirror of the cavity that is entirely mediated by the light field. We conclude with a discussion of the broader implications of this work, and some future research directions.
机译:本文着重于通过将机械振荡器耦合到原子和分子量子系统上来产生和测量其非经典状态。我们首先讨论在量子状态下运行的机械系统可以探索什么新颖的物理学。然后,我们讨论一种使之成为可能的技术-腔光学机械,特别是光学机械冷却。我们研究了光机械冷却的极限,并回顾了机械振荡器与外部热浴的耦合如何限制了最小的声子占有数。作为避免夹紧损失的一种可能选择,我们考虑一种全光学方法,其中机械元件(在这种情况下为布拉格镜)通过光学力悬挂,并讨论该方法的一些局限性。我们探索了几种旨在在机械振荡器中生成量子态的方案。我们具体考虑两个例子:一个是机械振荡器通过偶极-偶极相互作用耦合到极性分子,另一个是将磁性振荡器耦合到玻色子冷凝物。第一个示例强调,这种交互可以生成参数压缩和纠缠。第二种方案表明,BEC自旋测量的反向作用可用于生成机械振荡器运动的量子状态。然后,我们讨论测量机械振荡器的整个密度矩阵的可能方法。第一种方法是通过将其同时耦合到经典的光学振荡器和量子位来实现机械威格纳函数的层析成像重建。第二种方法涉及腔中玻色凝结物的动量激发与完全由光场介导的腔运动镜之间的状态转移方案。最后,我们讨论了这项工作的广泛含义以及一些未来的研究方向。

著录项

  • 作者

    Singh Swati;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号