首页> 外文OA文献 >A Task-Specific Approach to Computational Imaging System Design
【2h】

A Task-Specific Approach to Computational Imaging System Design

机译:一种特定于任务的计算成像系统设计方法

摘要

The traditional approach to imaging system design places the sole burden of image formation on optical components. In contrast, a computational imaging system relies on a combination of optics and post-processing to produce the final image and/or output measurement. Therefore, the joint-optimization (JO) of the optical and the post-processing degrees of freedom plays a critical role in the design of computational imaging systems. The JO framework also allows us to incorporate task-specific performance measures to optimize an imaging system for a specific task. In this dissertation, we consider the design of computational imaging systems within a JO framework for two separate tasks: object reconstruction and iris-recognition. The goal of these design studies is to optimize the imaging system to overcome the performance degradations introduced by under-sampled image measurements. Within the JO framework, we engineer the optical point spread function (PSF) of the imager, representing the optical degrees of freedom, in conjunction with the post-processing algorithm parameters to maximize the task performance. For the object reconstruction task, the optimized imaging system achieves a 50% improvement in resolution and nearly 20% lower reconstruction root-mean-square-error (RMSE ) as compared to the un-optimized imaging system. For the iris-recognition task, the optimized imaging system achieves a 33% improvement in false rejection ratio (FRR) for a fixed alarm ratio (FAR) relative to the conventional imaging system. The effect of the performance measures like resolution, RMSE, FRR, and FAR on the optimal design highlights the crucial role of task-specific design metrics in the JO framework. We introduce a fundamental measure of task-specific performance known as task-specific information (TSI), an information-theoretic measure that quantifies the information content of an image measurement relevant to a specific task. A variety of source-models are derived to illustrate the application of a TSI-based analysis to conventional and compressive imaging (CI) systems for various tasks such as target detection and classification. A TSI-based design and optimization framework is also developed and applied to the design of CI systems for the task of target detection, it yields a six-fold performance improvement over the conventional imaging system at low signal-to-noise ratios.
机译:成像系统设计的传统方法将图像形成的唯一负担放在光学组件上。相反,计算成像系统依赖于光学器件和后处理的组合来产生最终图像和/或输出测量值。因此,光学和后处理自由度的联合优化(JO)在计算成像系统的设计中起着至关重要的作用。 JO框架还允许我们合并特定于任务的性能指标,以针对特定任务优化成像系统。在本文中,我们考虑在JO框架内针对两个独立任务的计算成像系统设计:对象重建和虹膜识别。这些设计研究的目的是优化成像系统,以克服因欠采样图像测量而导致的性能下降。在JO框架内,我们结合后处理算法参数设计代表光学自由度的成像器光学点扩展函数(PSF),以最大化任务性能。对于对象重建任务,与未优化的成像系统相比,优化的成像系统可将分辨率提高50%,并将重建均方根误差(RMSE)降低近20%。对于虹膜识别任务,相对于常规成像系统,针对固定的报警率(FAR),优化的成像系统可将误剔除率(FRR)提高33%。诸如分辨率,RMSE,FRR和FAR之类的性能指标对最佳设计的影响凸显了特定于任务的设计指标在JO框架中的关键作用。我们介绍一种称为“任务特定信息”(TSI)的任务特定性能的基本度量,这是一种信息理论度量,用于量化与特定任务相关的图像测量的信息内容。推导了各种源模型,以说明基于TSI的分析在常规和压缩成像(CI)系统中用于各种任务(例如目标检测和分类)的应用。还开发了基于TSI的设计和优化框架,并将其应用于CI系统的目标检测任务,在低信噪比的情况下,它比常规成像系统的性能提高了六倍。

著录项

  • 作者

    Ashok Amit;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 EN
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号