首页> 外文OA文献 >DEVELOPMENT OF A MULTISCALE AND MULTIPHYSICS SIMULATION FRAMEWORK FOR REACTION-DIFFUSION-CONVECTION PROBLEMS
【2h】

DEVELOPMENT OF A MULTISCALE AND MULTIPHYSICS SIMULATION FRAMEWORK FOR REACTION-DIFFUSION-CONVECTION PROBLEMS

机译:反应扩散对流问题的多尺度和多物理场模拟框架的开发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Reaction-diffusion-convection (R-D-C) problems are governed by wide spectrum of spatio-temporal scales associated with ranges of physical and chemical processes. Such Problems are called multiscale, multiphysics problems. The challenge associated with R-D-C problems is to bridge these scales and processes as seamlessly as possible. For this purpose, we develop a wavelet-based multiscale simulation framework that couples diverse scales and physics.In a first stage we focus on R-D models. We treat the `fine' reaction-scales stochastically, with kinetic Monte Carlo (kMC). The transport via diffusion possesses larger spatio-temporal scales which are bridged to the kMC with the Compound Wavelet Matrix (CWM) formalism. Since R-D-C problems are dynamical we extend the CWM method via the dynamic-coupling of the kMC and diffusion models. The process is approximated by sequential increments, where the CWM on each increment is used as the starting point for the next, providing better exploration of phase-space. The CWM is extended to two-dimensional diffusion with a reactive line-boundary to show that the computational gain and error depends on the scale-overlap and wavelet-filtering. We improve the homogenization by a wavelet-based scheme for the exchange of information between a reactive and diffusive field by passing information along fine to coarse (up-scaling) and coarse to fine (down-scaling) scales by retaining the fine-scale statistics (higher-order moments, correlations). Critical to the success of the scheme is the identification of dominant scales. The efficiency of the scheme is compared to the homogenization and benchmark model with scale-disparity.To incorporate transport by convection, we then couple the Lattice Boltzmann Model (LBM) and kMC operating at diverse scales for flows around reactive block. Such model explores markedly different physics due to strong interplay between these time-scales. `Small' reaction induced temperature variations are considered for multiscale coupling of the reactions with the flow, showing the discrepancies in the evolutions and yield comparing to the conventional model. The same framework is used to study the reactions induced by hydrodynamic bubble collapse which shows the similar features of the kinetics and yield comparing to conventional models.We culminate to some problems that could be solved using the developed framework and preliminary results are presented as "proof of concept."
机译:反应-扩散-对流(R-D-C)问题受与物理和化学过程范围相关的宽广的时空尺度支配。这些问题称为多尺度,多物理场问题。与R-D-C问题相关的挑战是尽可能无缝地桥接这些规模和流程。为此,我们开发了一种基于小波的多尺度仿真框架,该框架将各种尺度和物理学结合在一起。在第一阶段,我们专注于R-D模型。我们用动力学蒙特卡洛(kMC)随机地处理“精细”反应规模。通过扩散的传输具有较大的时空尺度,并通过复合小波矩阵(CWM)形式将其桥接到kMC。由于R-D-C问题是动态的,因此我们通过kMC与扩散模型的动态耦合来扩展CWM方法。该过程通过顺序增量来近似,其中每个增量上的CWM用作下一个增量的起点,从而更好地探索相空间。 CWM扩展到具有反应性线边界的二维扩散,以表明计算增益和误差取决于尺度重叠和小波滤波。我们通过基于小波的方案在反应性和扩散场之间交换信息来提高均质性,方法是通过保留精细尺度统计信息,沿着精细至粗糙(向上缩放)和粗糙至精细(向下缩放)尺度传递信息(高阶矩,相关性)。该计划成功的关键是确定主导尺度。将该方案的效率与具有规模差异的均质化和基准模型进行了比较。为了通过对流整合输运,我们将莱迪思·玻耳兹曼模型(LBM)和kMC耦合到不同规模的反应块周围流动。由于这些时标之间的强烈相互作用,因此该模型探索了明显不同的物理学。考虑“小”反应引起的温度变化,以实现反应与流的多尺度耦合,与传统模型相比,显示出演化和产率方面的差异。使用相同的框架来研究由水力泡沫破裂引起的反应,与常规模型相比,该动力学表现出相似的动力学和产率特征。我们最终总结出了一些可以用已开发的框架解决的问题,初步结果被证明为“证明概念。”

著录项

  • 作者

    Mishra Sudib Kumar;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 EN
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号