首页> 外文OA文献 >A computational analysis of deep penetration laser welding.
【2h】

A computational analysis of deep penetration laser welding.

机译:深熔激光焊接的计算分析。

摘要

A model was devised and used as the basis of a computer simulation to predict the shape of and physical phenomena in the keyhole during deep penetration laser welding. The shape of the weld cavity was determined as a part of the solution, and a convection-dominated vaporization model was utilized. Deep penetration welding is characterized by the formation of the keyhole. Beyond a certain threshold laser power, the laser beam rapidly evaporates material creating a strong back pressure, which pushes the molten material sideways forming a cavity. Hence, the laser power is effectively transferred to the bottom of the cavity and penetrates into the material until an energy balance is achieved around the keyhole. Around the keyhole three different regions (solid, liquid, and vapor) are analyzed, each region with its most suitable method. The heat transfer within the solid region is solved by Boundary Element Method. A thin layer approximation is made to simplify the analysis in the liquid region. A scaling analysis shows that fluid dynamics in the liquid region does not contribute significantly to the heat transfer in the liquid region. In the vapor region, a one-dimensional gas dynamic model is adopted from the literature. The solutions in the three regions are matched to satisfy conservation of mass at the liquid-vapor interface and of energy at the solid-liquid interface. Specifically, the matching technique of energy at the solid-liquid interface is called the matching scheme, and with it the shape of the solid-liquid interface is calculated. Then the shape of the liquid-vapor interface can readily be obtained from the shape of the solid-liquid interface and the thin liquid layer approximation. The matching scheme and the use of modules combine to make a model which is capable of predicting the shape of the solid-liquid interface; depth of penetration; surface temperature of the keyhole; pressure acting on the keyhole; energy distribution, such as the energy of vaporization, fusion, and conduction; and the thickness of the liquid layer. As a model material, pure iron was analyzed in this study. The calculated penetration depths are compared to empirical data, in order to verify the current study, and good agreement was observed.
机译:设计了一个模型,并将其用作计算机模拟的基础,以预测深熔激光焊接过程中锁孔的形状和物理现象。确定焊缝腔的形状作为溶液的一部分,并使用对流主导的汽化模型。深熔焊的特点是形成了锁孔。超过一定阈值的激光功率,激光束会迅速蒸发材料,从而产生强大的反压,从而将熔融材料向侧面推动,形成空腔。因此,激光功率有效地传递到腔体的底部并渗透到材料中,直到在锁孔周围实现能量平衡为止。在钥匙孔周围,分析了三个不同的区域(固体,液体和蒸气),每个区域都有其最合适的方法。固体区域内的热传递通过边界元法解决。进行薄层近似以简化液体区域中的分析。比例分析表明,液体区域中的流体动力学对液体区域中的热传递没有显着贡献。在蒸气区域,从文献中采用一维气体动力学模型。匹配这三个区域中的溶液,以满足在液-气界面处的质量守恒和在固-液界面处的能量守恒。具体地,将固液界面处的能量的匹配技术称为匹配方案,并以此来计算固液界面的形状。然后,可以从固液界面的形状和薄液层的近似值容易地获得液-气界面的形状。匹配方案和模块的使用相结合,形成了一个能够预测固液界面形状的模型。渗透深度;锁孔表面温度;作用在钥匙孔上的压力;能量分布,例如汽化,聚变和传导的能量;和液体层的厚度。作为模型材料,本研究分析了纯铁。为了验证当前的研究,将计算出的穿透深度与经验数据进行了比较,并观察到了很好的一致性。

著录项

  • 作者

    Lim Junghwan.;

  • 作者单位
  • 年度 1993
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号