首页> 外文OA文献 >Development and image quality assessment of a contrast-enhancement algorithm for display of digital chest radiographs.
【2h】

Development and image quality assessment of a contrast-enhancement algorithm for display of digital chest radiographs.

机译:用于显示数字胸部X光片的对比度增强算法的开发和图像质量评估。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation presents a contrast-enhancement algorithm called Artifact-Suppressed Adaptive Histogram Equalization (ASAHE). This algorithm was developed as part of a larger effort to replace the film radiographs currently used in radiology departments with digital images. Among the expected benefits of digital radiology are improved image management and greater diagnostic accuracy. Film radiographs record X-ray transmission data at high spatial resolution, and a wide dynamic range of signal. Current digital radiography systems record an image at reduced spatial resolution and with coarse sampling of the available dynamic range. These reductions have a negative impact on diagnostic accuracy. The contrast-enhancement algorithm presented in this dissertation is designed to boost diagnostic accuracy of radiologists using digital images. The ASAHE algorithm is an extension of an earlier technique called Adaptive Histogram Equalization (AHE). The AHE algorithm is unsuitable for chest radiographs because it over-enhances noise, and introduces boundary artifacts. The modifications incorporated in ASAHE suppress the artifacts and allow processing of chest radiographs. This dissertation describes the psychophysical methods used to evaluate the effects of processing algorithms on human observer performance. An experiment conducted with anthropomorphic phantoms and simulated nodules showed the ASAHE algorithm to be superior for human detection of nodules when compared to a computed radiography system's algorithm that is in current use. An experiment conducted using clinical images demonstrating pneumothoraces (partial lung collapse) indicated no difference in human observer accuracy when ASAHE images were compared to computed radiography images, but greater ease of diagnosis when ASAHE images were used. These results provide evidence to suggest that Artifact-Suppressed Adaptive Histogram Equalization can be effective in increasing diagnostic accuracy and efficiency.
机译:本文提出了一种对比度增强算法,称为伪影抑制自适应直方图均衡(ASAHE)。开发此算法是一项更大努力的一部分,该努力将放射线部门当前使用的胶片X光片替换为数字图像。数字放射学的预期好处包括改进的图像管理和更高的诊断准确性。胶片X射线照片以高空间分辨率和宽动态范围的信号记录X射线透射数据。当前的数字放射线照相系统以降低的空间分辨率和可用动态范围的粗略采样来记录图像。这些降低对诊断准确性有负面影响。本文提出的对比增强算法旨在提高放射科医生使用数字图像的诊断准确性。 ASAHE算法是一种称为自适应直方图均衡化(AHE)的早期技术的扩展。 AHE算法不适合用于胸部X光片,因为它会增强噪声并引入边界伪影。 ASAHE中包含的修改可抑制伪影并允许处理胸部X光片。本文介绍了用于评估处理算法对人类观察者性能影响的心理物理方法。用拟人化体模和模拟结节进行的实验表明,与目前使用的计算机放射成像系统算法相比,ASAHE算法对人体结节的检测更为出色。使用临床图像进行的肺气虚(部分肺塌陷)临床实验表明,将ASAHE图像与计算机射线照相图像进行比较时,人类观察者的准确性没有差异,但是使用ASAHE图像时,诊断起来更加容易。这些结果提供了证据,表明伪影抑制的自适应直方图均衡化可以有效提高诊断准确性和效率。

著录项

  • 作者

    Rehm Kelly.;

  • 作者单位
  • 年度 1992
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号