首页> 外文OA文献 >Investigation of neural networks for the scheduling and allocation problem in high-level synthesis
【2h】

Investigation of neural networks for the scheduling and allocation problem in high-level synthesis

机译:高层综合中调度与分配问题的神经网络研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years neural network have been shown to be quite effective in solving difficult combinatorial optimization problems. In this work a Hopfield neural network is used to schedule operations in a dataflow graph. This is an important step in behavioral synthesis systems. These operations must be assigned to a limited number of control steps, functional units, and busses. Also, there is an objective to minimize the lengths of data paths. Current methods which do this type of scheduling typically rely on heuristic algorithms. The neural network devised to solve this problem is one of the most complex to date. A special mechanism, "flag" neurons, was developed to enable the neural network to encode a bussing constraint. The neural network has been tested with problems from literature and problems randomly generated. The results have been consistently superior to those produced by a heuristic algorithm called ALAP.
机译:近年来,神经网络已被证明在解决困难的组合优化问题方面非常有效。在这项工作中,使用Hopfield神经网络来计划数据流图中的操作。这是行为综合系统中的重要一步。这些操作必须分配给有限数量的控制步骤,功能单元和总线。另外,还有一个目标是最小化数据路径的长度。当前执行此类调度的方法通常依赖于启发式算法。为解决这个问题而设计的神经网络是迄今为止最复杂的神经网络之一。开发了一种特殊的机制“标志”神经元,以使神经网络能够编码总线约束。已经对神经网络进行了测试,涉及文献中的问题和随机产生的问题。结果一直优于由称为ALAP的启发式算法产生的结果。

著录项

  • 作者

    Glassen David Wayne;

  • 作者单位
  • 年度 1993
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号