首页> 外文OA文献 >High performance simulation-based optimization environment for large scale systems
【2h】

High performance simulation-based optimization environment for large scale systems

机译:基于高性能仿真的大型系统优化环境

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modelling large scale systems with natural and artificial components requires storage of voluminous amounts of knowledge/information as well as computing speed for simulations to provide reliable answers in reasonable time. Computing technology is becoming powerful enough to support such high performance modelling and simulation. This dissertation proposes a high performance simulation based optimization environment to support the design and modeling of large scale systems with high levels of resolution. The proposed environment consists of three layers--modeling, simulation and searcher layer. The modeling layer employs the Discrete Event System Specification (DEVS) formalism and shows how it provides efficient and effective representation of both continuous and discrete processes in mixed artificial/natural systems necessary to fully exploit available computational resources. Focusing on the portability of DEVS across serial/parallel platforms, the simulation layer adopts object-oriented technology to achieve it. DEVS is implemented in terms of a collection of classes, called containers, using C++. The searcher layer employs Genetic Algorithms to provide generic, robust search capability. In this layer, a class of parallel Genetic Algorithms, called Distributed Asynchronous Genetic Algorithm (DAGA), is developed to provide the speed required for simulation based optimization of large scale systems. This dissertation presents an example of DEVS modeling for a watershed, which is one of the most complex ecosystems. The example shows a well-justified process of abstraction from traditional differential equation models to DEVS representation. An approach is proposed for valid aggregation of spatially distributed systems to reduce the simulation time of watershed models. DEVS representation and spatial aggregation assure relative validity and realism with feasible computational constraints. Throughout the dissertation, several examples of GA optimization are presented to demonstrate the effectiveness of the proposed optimization environment in modeling large scale systems.
机译:用天然和人造成分对大型系统进行建模需要存储大量的知识/信息以及用于模拟的计算速度,以便在合理的时间内提供可靠的答案。计算技术变得越来越强大,足以支持这种高性能的建模和仿真。本文提出了一种基于高性能仿真的优化环境,以支持具有高分辨率的大型系统的设计和建模。提议的环境包括三层-建模,仿真和搜索器层。建模层采用了离散事件系统规范(DEVS)形式,并显示了它如何在充分利用可用计算资源所必需的人工/自然系统中提供连续过程和离散过程的有效表示。针对DEVS在串行/并行平台上的可移植性,仿真层采用面向对象的技术来实现。 DEVS是使用C ++根据称为容器的类的集合来实现的。搜索器层采用遗传算法来提供通用的鲁棒搜索功能。在这一层中,开发了一种称为分布式异步遗传算法(DAGA)的并行遗传算法,以提供基于仿真的大型系统优化所需的速度。本文提出了一个流域的DEVS建模示例,该流域是最复杂的生态系统之一。该示例显示了从传统微分方程模型到DEVS表示的合理抽象过程。提出了一种有效聚合空间分布系统的方法,以减少分水岭模型的仿真时间。 DEVS表示法和空间聚集法可在可行的计算约束下确保相对有效性和真实性。在整个论文中,提出了一些GA优化示例,以证明所提出的优化环境对大型系统建模的有效性。

著录项

  • 作者

    Moon Yoon Keon 1959-;

  • 作者单位
  • 年度 1996
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号