首页> 外文OA文献 >Improving high-resolution IR satellite-based precipitation estimation: A procedure for cloud-top relief displacement adjustment
【2h】

Improving high-resolution IR satellite-based precipitation estimation: A procedure for cloud-top relief displacement adjustment

机译:改进基于高分辨率红外卫星的降水估算:云顶浮雕位移调整的程序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An efficient and simple method has been developed to improve quality and accuracy of satellite-based VIS/IR images through cloud-top relief spatial displacements adjustment. The products of this algorithm, including cloud-top temperatures and heights, atmospheric temperature profiles for cloudy sky, and displacement-adjusted cloud images, can be useful for weather/climate and atmospheric studies, particularly for high-resolution hydrologic applications such as developing IR satellite-based rainfall estimates, which are urgently needed by mesoscale atmospheric modeling and studies, severe weather monitoring, and heavy precipitation and flash flood forecasting. Cloud-top height and displacement are estimated by applying stereoscopic analysis to a pair of corresponding scan-synchronous infrared images from geostationary satellites (GOES-east and GOES-west). A piecewise linear approximation relationship between cloud-top height and temperature, with a few (6 and 8) parameters is developed to simplify and speed-up the retrieval process. Optimal parameters are estimated using the Shuffled Complex Evolution (SCE-UA) algorithm to minimize the discrepancies between the brightness temperatures of the same location as registered by two satellites. The combination of the linear approximation and the fast optimization algorithm simplifies stereoscopic analysis and allows for its implementation on standard desktop computers. When compared to the standard isotherm matching approaches the proposed method yields higher correlation between simultaneous GOES-8 and GOES-9 images after parallax adjustment. The validity of the linear approximation was also tested against temperature profiles obtained from ground sounding measurements of the TRMM-TEFLUN experiments. This comparison demonstrated good fit between the optimized relationship and atmospheric sounding profile. The accuracy of cloud pixel geo-location was demonstrated through a spatial comparison between correlation of ground-based radar rainfall rate and corresponding both adjusted and original satellite IR images. Higher correlation was represented using displacement-adjusted IR images from both geostationary satellites (GOES) with high altitudes and low altitude satellite (TRMM). Higher correlation and lower RMSE between ground-based NEXRAD observations and estimated rainfall rates from spatial adjusted IR images, using an artificial neural networks algorithm (PERSIANN), present the rainfall retrieval improvement. The ability to differentiate ground surface particularly snow-covered areas from clouds in near-real-time is another useful application of estimated cloud-top height.
机译:已经开发出一种有效且简单的方法,通过云顶浮雕空间位移调整来提高基于卫星的VIS / IR图像的质量和准确性。该算法的产品,包括云顶温度和高度,多云天空的大气温度曲线以及经位移调整的云图,可用于天气/气候和大气研究,特别是用于高分辨率水文应用(例如开发IR)中尺度大气建模和研究,恶劣天气监测以及强降水和山洪预报迫切需要基于卫星的降雨估计。通过对来自对地静止卫星(GOES-east和GOES-west)的一对相应的扫描同步红外图像进行立体分析,可以估算出云顶的高度和位移。建立了云顶高度和温度之间的分段线性近似关系,并使用几个参数(6和8)来简化和加快检索过程。使用随机混合演化(SCE-UA)算法估算最佳参数,以最小化两个卫星所记录的同一位置的亮度温度之间的差异。线性近似和快速优化算法的组合简化了立体分析,并允许在标准台式计算机上实施。当与标准等温线匹配方法相比时,在视差调整后,提出的方法在同时的GOES-8和GOES-9图像之间产生更高的相关性。还针对从TRMM-TEFLUN实验的地面探测获得的温度曲线测试了线性逼近的有效性。该比较表明,优化关系与大气探测剖面之间具有很好的契合性。通过对地基雷达降雨率的相关性与相应的已调整卫星红外图像和原始卫星红外图像之间的空间比较,证明了云像素地理位置的准确性。使用来自具有高空和低空卫星(TRMM)的对地静止卫星(GOES)的位移调整后的红外图像表示了更高的相关性。使用人工神经网络算法(PERSIANN),基于地面的NEXRAD观测值与根据空间调整后的红外图像估算的降雨率之间的较高相关性和较低的RMSE,显示了降雨检索的改进。能够近乎实时地将地面特别是积雪覆盖的区域与云区分开的能力是估计的云顶高度的另一个有用应用。

著录项

  • 作者

    Esmaelili-Mahani Shayesteh;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号