首页> 外文OA文献 >Self-optimizing stochastic systems: Applications to stochastic shortest path problem, stochastic traveling salesman problem, and queueing systems.
【2h】

Self-optimizing stochastic systems: Applications to stochastic shortest path problem, stochastic traveling salesman problem, and queueing systems.

机译:自我优化的随机系统:应用于随机最短路径问题,随机旅行商问题和排队系统。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate stochastic systems which have a set of control parameters and a performance criterion. By operating the system at fixed control parameters, noisy performance values are observed. (The values are noisy due to the inherent stochastic nature of the system.) Certain relevant distributions of the system are assumed unavailable. The task is to develop algorithms that guide the system to optimal parameter settings based on its operating history. Consider the stochastic shortest path problem, where the time to traverse an edge is given by a random variable whose distribution is unavailable explicitly. The optimality criterion (to be maximized) is the probability of going from a given source node to a given terminal node within a specified critical time period. By choosing a particular path and traversing it, realizations of the distributions, i.e. time to go from the source node to the terminal node on that path are observed. Or consider the M/M/1 queue. Here, the control parameter is the average service time. The performance criterion is the sum of cost of the server and cost of system time of a customer in steady-state. By choosing a particular average service time and serving accordingly, a noisy observation of the total cost is obtained. We combine an asymptotically optimal random search method for finding the global optimum of a function with problem-specific local search techniques. Such a combination results in efficient solution procedures for the above problems. This conclusion is reached by applying the procedure to problems for which the optimum solutions are known. The main contribution of the study is in demonstrating that "reasonable" performance can be achieved for the proposed optimization problems in "reasonable" time by exploiting problem-specific structures to advantage. The generality of the method should allow others to use it in different optimization settings than ours. Also, the self-optimizing aspect of these methods and the stochastic versions of the local search techniques are new.
机译:我们研究具有一组控制参数和性能标准的随机系统。通过以固定的控制参数运行系统,可以观察到嘈杂的性能值。 (由于系统固有的随机性,该值比较嘈杂。)假定系统的某些相关分布不可用。任务是开发算法,以根据系统的运行历史将系统引导至最佳参数设置。考虑随机最短路径问题,其中遍历边缘的时间由一个随机变量给出,该随机变量的分布明确地不可用。最优性标准(要最大化)是在指定的关键时间段内从给定源节点到给定终端节点的概率。通过选择特定的路径并遍历它,可以观察到分布的实现,即从该路径上的源节点到终端节点的时间。或考虑M / M / 1队列。在此,控制参数是平均服务时间。性能标准是服务器成本和稳定状态下客户的系统时间成本之和。通过选择特定的平均服务时间并相应地服务,可以获得对总成本的嘈杂观察。我们将渐近最优随机搜索方法与特定于问题的局部搜索技术相结合,以找到函数的全局最优值。这样的组合导致针对上述问题的有效解决方案。通过将程序应用于已知最佳解决方案的问题,可以得出此结论。该研究的主要贡献在于,通过充分利用问题特定的结构,可以证明在“合理”时间内针对所提出的优化问题可以实现“合理”性能。该方法的一般性应允许其他人在与我们不同的优化设置中使用它。同样,这些方法的自我优化方面和本地搜索技术的随机版本也是新的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号