首页> 外文OA文献 >ERROR ANALYSIS AND DATA REDUCTION FOR INTERFEROMETRIC SURFACE MEASUREMENTS
【2h】

ERROR ANALYSIS AND DATA REDUCTION FOR INTERFEROMETRIC SURFACE MEASUREMENTS

机译:干涉测量的误差分析和数据减少

摘要

High-precision optical systems are generally tested using interferometry, since it often is the only way to achieve the desired measurement precision and accuracy. Interferometers can generally measure a surface to an accuracy of one hundredth of a wave. In order to achieve an accuracy to the next order of magnitude, one thousandth of a wave, each error source in the measurement must be characterized and calibrated.Errors in interferometric measurements are classified into random errors and systematic errors. An approach to estimate random errors in the measurement is provided, based on the variation in the data. Systematic errors, such as retrace error, imaging distortion, and error due to diffraction effects, are also studied in this dissertation. Methods to estimate the first order geometric error and errors due to diffraction effects are presented.Interferometer phase modulation transfer function (MTF) is another intrinsic error. The phase MTF of an infrared interferometer is measured with a phase Siemens star, and a Wiener filter is designed to recover the middle spatial frequency information.Map registration is required when there are two maps tested in different systems and one of these two maps needs to be subtracted from the other. Incorrect mapping causes wavefront errors. A smoothing filter method is presented which can reduce the sensitivity to registration error and improve the overall measurement accuracy.Interferometric optical testing with computer-generated holograms (CGH) is widely used for measuring aspheric surfaces. The accuracy of the drawn pattern on a hologram decides the accuracy of the measurement. Uncertainties in the CGH manufacturing process introduce errors in holograms and then the generated wavefront. An optimal design of the CGH is provided which can reduce the sensitivity to fabrication errors and give good diffraction efficiency for both chrome-on-glass and phase etched CGHs.
机译:高精度光学系统通常使用干涉仪进行测试,因为它通常是获得所需测量精度和准确度的唯一方法。干涉仪通常可以将表面的测量精度提高到波的百分之一。为了达到千分之一波的精确度,必须对测量中的每个误差源进行特征化和校准。干涉测量中的误差分为随机误差和系统误差。提供了一种基于数据变化来估计测量中随机误差的方法。本文还研究了系统误差,如回扫误差,成像畸变和衍射效应引起的误差。提出了估算一阶几何误差和由于衍射效应引起的误差的方法。干涉仪相位调制传递函数(MTF)是另一个固有误差。红外干涉仪的相位MTF用西门子星相进行测量,并且设计了一个维纳滤波器来恢复中间空间频率信息。当在不同系统中测试了两张地图并且这两张地图之一需要从另一个减去。不正确的映射会导致波前错误。提出了一种平滑滤波方法,可以降低配准误差的敏感性,提高整体测量精度。计算机生成全息图(CGH)的干涉光学测试被广泛用于非球面测量。全息图上绘制图案的准确性决定了测量的准确性。 CGH制造过程中的不确定性会导致全息图出现误差,进而导致产生的波前。提供了CGH的最佳设计,可以降低对制造误差的敏感性,并为玻璃上铬和相蚀刻的CGH提供良好的衍射效率。

著录项

  • 作者

    Zhou Ping;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 EN
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号