首页> 外文OA文献 >Genomics of Adaptation in Herbivorous Insects
【2h】

Genomics of Adaptation in Herbivorous Insects

机译:食草昆虫适应基因组学

摘要

Parasitism is one of the most successful life history strategies to have evolved: parasites make up a majority of all named species, and nearly every multicellular organism must contend with a diverse suite of parasites. Characterizing differences in patterns of genome evolution between parasites and free-living species could reveal general evolutionary and physiological strategies underlying the evolution of parasitism, with implications for goals ranging from understanding biodiversity to developing anti-parasite treatments. Dramatic differences in gene content between parasitic and non-parasitic lineages, as well as the absence of parasitic lineages from many higher taxonomic groups (for example, two-thirds of insect orders lack parasites of plants), might indicate that parasitism is difficult to evolve and requires many genome-wide changes. However, inferences of the genomic changes that enable free-living organisms to evolve into parasites have been hindered by the fact that typical patterns of genome evolution are not well characterized in the closest non-parasitic relatives of many well-studied parasitic lineages. A major question therefore remains unanswered: are dramatic genetic innovations (such as the birth of many new genes or dramatic re-organization of genome content) necessary for the evolution of parasitism, or is the modification of pre-existing genes and traits sufficient?udThe primary aim of this dissertation was to characterize the genetic basis and evolution of traits involved in overcoming major barriers to parasitism. I helped lead the development of a novel genomic model system for host-parasite interactions: leaf-mining (i.e., endo-parasitic) flies in the genus Scaptomyza that feed on mustard plants including the genetic model plant, Arabidopsis thaliana, and that are close relatives of the genetic model insect, Drosophila melanogaster. I then used approaches from evolutionary and quantitative genomics, functional genetics, and biochemistry to investigate genomic changes coupled with the evolution of parasitism of plants in this lineage. The availability of functional genetic and comparative genomic resources for many non-parasitic, microbe-feeding Drosophila is a key feature of this model system, which facilitated the identification of derived gene functions and patterns of genome evolution coupled with the transition to parasitism of plants.udI found that Scaptomyza overcame some of the major barriers to parasitism through the modification of pre-existing genes and pathways rather than dramatic genetic innovations. Specifically, leaf-mining Scaptomyza evolved the capacity to efficiently detoxify the major defensive chemicals in their host plants through rapid molecular and functional evolution of paralogous genes encoding glutathione S-transferases, which are enzymes involved in detoxification of a broad range of electrophilic compounds across eukaryotes. The few other gene families evolving more rapidly in Scaptomyza than in its non-parasitic relatives also interact with dietary compounds, supporting the prediction that novel exposure to plant-derived toxins and nutrients is a major selective pressure for herbivorous insects. Lastly, I found evidence that a conserved pathway for peripheral sensory organ development is involved in the development of the serrated ovipositor of S. flava, a derived trophic organ associated with feeding and reproduction on plants. These findings challenge the paradigm that dramatic genetic innovations are required to overcome barriers to the evolution of parasitism.udIn addition to driving divergence among species, host-parasite interactions are also predicted to shape genetic variation within populations. In the second half of this dissertation, I investigated how genetic variation mediates the outcomes of plant-herbivore interactions. Through a genome-wide association study, I discovered that two classes of genes in the Arabidopsis genome control susceptibility to herbivory by S. flava: those affecting production of defensive chemicals and those affecting plant size. These findings, which bridge two competing theories regarding the genetic determinants of herbivory, resulted from an experimental approach that quantified both herbivore foraging behavior and feeding rates. Further, the effect of plant chemical defenses on feeding rate varied among populations of mustard-feeding Scaptomyza, which opens future avenues for dissecting genetic changes in Scaptomyza that determine how plant chemicals shape feeding behavior and performance. I conclude with a conceptual review that outlines key areas of future research required for understanding how interactions between plants and herbivores shape patterns of genetic variation.
机译:寄生虫是进化出的最成功的生命史策略之一:寄生虫占所有命名物种的绝大部分,几乎每个多细胞生物都必须与多种寄生虫竞争。表征寄生虫和自由生活物种之间基因组进化模式的差异可以揭示寄生虫进化基础的一般进化和生理策略,其目标涉及从理解生物多样性到发展抗寄生虫治疗的目标。寄生谱系和非寄生谱系之间基因含量的巨大差异,以及许多较高的分类学组没有寄生谱系(例如,三分之二的昆虫纲缺少植物寄生虫),可能表明寄生虫很难进化并且需要在全基因组范围内进行许多更改。但是,由于许多研究的寄生谱系的最接近的非寄生近缘种没有很好地表征典型的基因组进化模式,因此阻碍了使自由生物进化为寄生虫的基因组变化的推断。因此,仍然没有一个主要问题要解决:寄生虫的进化是否需要进行戏剧性的遗传创新(例如许多新基因的诞生或基因组内容的戏剧性重新组织),还是对已有基因和性状的修饰足够?本论文的主要目的是描述克服寄生虫主要障碍的性状的遗传基础和进化。我帮助领导了一种用于宿主-寄生虫相互作用的新型基因组模型系统的开发:Scaptomyza属中的采叶(即内寄生)果蝇以芥菜植物为食,其中包括遗传模型植物拟南芥(Arabidopsis thaliana),而且亲缘关系很近。遗传模型昆虫黑腹果蝇的亲戚。然后,我使用了来自进化和定量基因组学,功能遗传学和生物化学的方法来研究基因组变化以及该世系中植物寄生性的进化。许多非寄生性,以微生物为食的果蝇的功能遗传和比较基因组资源的可用性是该模型系统的关键特征,它有助于鉴定衍生的基因功能和基因组进化的模式,以及过渡到植物的寄生性。 ud我发现,Scaptomyza通过修改已有的基因和途径而不是进行重大的遗传创新,克服了寄生虫的一些主要障碍。具体而言,通过开采谷胱甘肽S-转移酶的旁系同源基因的快速分子和功能进化,叶采石蜡菜已发展出对宿主植物中主要防御化学物质进行有效解毒的能力,谷胱甘肽S-转移酶是涉及跨真核生物对多种亲电子化合物进行解毒的酶。在Scaptoomyza中比其非寄生亲戚进化得更快的其他几个基因家族也与饮食化合物相互作用,支持了这样的预测,即新接触植物来源的毒素和营养素是食草昆虫的主要选择压力。最后,我发现有证据表明,外围感觉器官发育的保守途径参与了S. flava的锯齿状产卵器的发育,S。flava是与植物的摄食和繁殖相关的衍生营养器官。这些发现挑战了范式,即需要巨大的遗传学创新来克服寄生虫进化的障碍。 ud除了驱动物种之间的差异外,还预测宿主与寄生虫之间的相互作用会影响种群内部的遗传变异。在本文的后半部分,我研究了遗传变异如何介导植物-草食动物相互作用的结果。通过全基因组关联研究,我发现拟南芥基因组中的两类基因控制着S. flava对草食性的易感性:那些影响防御性化学物质生产的基因和那些影响植物大小的基因。这些发现桥接了两个有关食草动物遗传决定因素的相互竞争的理论,这些发现来自于一种对食草动物的觅食行为和摄食率进行量化的实验方法。此外,植物化学防御对饲喂速率的影响因芥菜饲喂的Scappomyza种群而异,这为剖析Scaptomyza的遗传变化提供了未来的途径,这些遗传变化决定了植物化学物质如何改变饲喂行为和性能。最后,我进行了概念回顾,概述了了解植物和草食动物之间的相互作用如何塑造遗传变异模式所需的未来研究的关键领域。

著录项

  • 作者

    Gloss Andrew;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号