首页> 外文OA文献 >Computationally Aware Control of Cyber-Physical Systems: A Hybrid Model Predictive Control Approach
【2h】

Computationally Aware Control of Cyber-Physical Systems: A Hybrid Model Predictive Control Approach

机译:网络物理系统的计算感知控制:一种混合模型预测控制方法

摘要

Cyber-Physical Systems (CPS) are systems of collaborating computational elements controlling physical entities via communication. Such systems involve control processes of physical entities and computational processes. The control complexities originated from the physical dynamics and systematic constraints are difficult for traditional control approaches (e.g., PID control) to handle without an exponential increase in design/test etc. costs. Model predictive control (MPC) predicts and produces optimized control inputs based on its predictive model according to a cost function under given constraints. This control scheme has some attractive features for CPSs: it handles constraints systematically, and generates behavior prediction with respective control inputs simultaneously. However, MPC approaches are computationally intensive, and the computation burden generally grows as a predictive model more closely approximates a nonlinear plant (in order to achieve more accurate behavior). The computational burden of predictive methods can be addressed through model reduction at the cost of higher divergence between prediction and actual behavior. This work introduces a metric called uncontrollable divergence, and proposes a mechanism using the metric to select the model to use in the predictive controller (assuming that a set of predictive models are available). The metric reveals the divergence between predicted and true states caused by return time and model mismatch. More precisely, a map of uncontrollable divergence plotted over the state space gives the criterion to judge where a specific model can outperform others. With this metric and the mechanism, this work designs a controller that switches at runtime among a set of predictive controllers in which respective models are deployed. The resulting controller is a hybrid predictive controller. In addition to design and runtime tools, this work also studies stability conditions for hybrid model predictive controllers in two approaches. One is average dwell time based, and it does not rely on the offline computation that studies the system properties. The other one uses a reference Lyapunov function instead of multiple Lyapunov functions derived from multiple predictive controllers. This approach implicitly depends on the offline numerical solutions of certain systematic properties. The term "boundedness" is preferable in this context since it accepts numerical error and approximations. Two examples, vertical takeoff and landing aerial vehicle control and ground vehicle control, are used to demonstrate the approach of hybrid MPC.
机译:网络物理系统(CPS)是通过通信来协作控制物理实体的计算元素的系统。这样的系统涉及物理实体的控制过程和计算过程。如果不以指数形式增加设计/测试等成本,则传统控制方法(例如PID控制)难以应对源自物理动力学和系统约束的控制复杂性。模型预测控制(MPC)根据给定约束条件下的成本函数,基于其预测模型预测并产生优化的控制输入。对于CPS,此控制方案具有一些吸引人的功能:它可以系统地处理约束,并同时使用各个控制输入生成行为预测。但是,MPC方法的计算量很大,并且随着预测模型更接近非线性工厂(以实现更准确的行为),计算负担通常会增加。预测方法的计算负担可以通过模型简化来解决,但代价是预测与实际行为之间的差异更大。这项工作引入了一种称为不可控散度的度量,并提出了一种使用该度量来选择要在预测控制器中使用的模型的机制(假设有一组预测模型可用)。该度量揭示了由返回时间和模型不匹配导致的预测状态与真实状态之间的差异。更准确地说,在状态空间上绘制的不可控散度图提供了判断特定模型在哪些方面可以胜过其他模型的标准。利用此度量标准和机制,这项工作设计了一种控制器,该控制器在运行时在其中部署了各个模型的一组预测控制器之间切换。所得的控制器是混合预测控制器。除了设计和运行时工具外,这项工作还通过两种方法研究混合模型预测控制器的稳定性条件。一种是基于平均停留时间的,它不依赖于研究系统属性的离线计算。另一个使用参考Lyapunov函数,而不是从多个预测控制器派生的多个Lyapunov函数。这种方法隐含地依赖于某些系统特性的离线数值解。在此上下文中,术语“有界性”是优选的,因为它接受数值误差和近似值。垂直起飞和着陆飞行器控制以及地面飞行器控制这两个示例用于演示混合MPC的方法。

著录项

  • 作者

    Zhang Kun;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号