首页> 外文OA文献 >Speeding Up Tumor Growth Simulations Using Parallel Programming and Cellular Automata
【2h】

Speeding Up Tumor Growth Simulations Using Parallel Programming and Cellular Automata

机译:使用并行编程和元胞自动机加速肿瘤生长模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The study of tumor growth biology with computer-based models is currently an area of active research. Different simulation techniques can be used to describe the complexity of any real tumor behavior, among these, "cellular automata"-based simulations provide an accurate tumor growth graphical representation while, at the same time, keep simpler the implementation of the automata as computer programs. Several authors have recently published relevant proposals, based on the latter approach, to solve tumor growth representation problem through the development of some strategies for accelerating the simulation model. These strategies achieve computational performance of cellular-models representation by the appropriate selection of data types, and the clever use of supporting data structures. However, as of today, multithreaded processing techniques and multicore processors have not been used to program cellular growth models with generality. This paper presents a new model that incorporates parallel programming for multi and manycore processors, and implements any synchronization requirement necessary to implement the solution. The proposed parallel model has been proved using Java and C++ program implementations on two different platforms: chipset Intel i5-4440 and one node of 16-processors cluster of our university. The improvement resulting from the introduction of parallelism into the model is analyzed in this paper, comparing it with the standard sequential simulation model currently used by researchers in mathematical oncology.
机译:利用基于计算机的模型进行的肿瘤生长生物学研究是当前活跃的领域。可以使用不同的仿真技术来描述任何实际肿瘤行为的复杂性,其中,基于“细胞自动机”的仿真提供了准确的肿瘤生长图形表示,同时使自动机作为计算机程序的实现更加简单。最近,有几位作者基于后一种方法发表了相关建议,以通过开发一些加速仿真模型的策略来解决肿瘤生长表示问题。这些策略通过适当选择数据类型以及巧妙地使用支持数据结构来实现细胞模型表示的计算性能。但是,到目前为止,尚未普遍使用多线程处理技术和多核处理器来编程蜂窝增长模型。本文提出了一种新模型,该模型结合了针对多核和多核处理器的并行编程,并实现了实现解决方案所需的任何同步要求。使用Java和C ++程序在两种不同的平台上进行了实证的并行模型验证:芯片组Intel i5-4440和我们大学的16个处理器集群的一个节点。本文分析了将并行性引入模型中所带来的改进,并将其与数学肿瘤学研究人员当前使用的标准顺序仿真模型进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号