首页> 外文OA文献 >Bayesian correlated models for assessing the prevalence of viruses in organic and non-organic agroecosystems
【2h】

Bayesian correlated models for assessing the prevalence of viruses in organic and non-organic agroecosystems

机译:贝叶斯相关模型,用于评估有机和非有机农业生态系统中病毒的流行程度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cultivation of horticultural species under organic management has increased in importance in recent years. However, the sustainability of this new production method needs to be supported by scientific research, especially in the field of virology. We studied the prevalence of three important virus diseases in agroecosystems with regard to its management system: organic versus non-organic, with and without greenhouse. Prevalence was assessed by means of a Bayesian correlated binary model which connects the risk of infection of each virus within the same plot and was defined in terms of a logit generalized linear mixed model (GLMM). Model robustness was checked through a sensitivity analysis based on different hyperprior scenarios. Inferential results were examined in terms of changes in the marginal posterior distributions, both for fixed and for random effects, through the Hellinger distance and a derived measure of sensitivity. Statistical results suggested that organic systems show lower or similar prevalence than non-organic ones in both single and multiple infections as well as the relevance of the prior specification of the random effects in the inferential process.
机译:近年来,在有机管理下栽培园艺物种的重要性日益提高。但是,这种新生产方法的可持续性需要科学研究的支持,尤其是在病毒学领域。就其管理系统,我们研究了农业生态系统中三种重要病毒疾病的流行:有机和非有机,有无温室。流行率通过贝叶斯相关二元模型进行评估,该模型连接了同一地块内每种病毒的感染风险,并根据对数广义线性混合模型(GLMM)进行了定义。通过基于不同超先决情况的敏感性分析来检查模型的稳健性。通过Hellinger距离和灵敏度的衍生度量,根据固定和随机效应的边际后验分布的变化来检验推断结果。统计结果表明,在一次和多次感染中,有机系统的患病率均比非有机系统低或相近,并且推断过程中随机效应的先验指标具有相关性。

著录项

  • 作者

    Lázaro Elena;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号