首页> 外文OA文献 >MODELING THE EFFECT OF TEMPERATURE ON ENVIRONMENTALLY SAFE OIL BASED DRILLING MUD USING ARTIFICIAL NEURAL NETWORK ALGORITHM
【2h】

MODELING THE EFFECT OF TEMPERATURE ON ENVIRONMENTALLY SAFE OIL BASED DRILLING MUD USING ARTIFICIAL NEURAL NETWORK ALGORITHM

机译:基于人工神经网络算法的温度对基于安全油的钻井泥浆建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Due to increase in environmental legislation against the deposition of oil based mud on the environment, drilling companies have come up with an optimum drilling mud such as plant oil based mud with little or no aromatic content, which its waste is biodegradable. Optimum mud carry out the same function as diesel oil based drilling fluid and equally meets up with the HSE (Health, safety and environment) standard. It is expedient to determine the down hole mud properties such density in the laboratory or use of available correlation but most time; the range of data is not either reliable or unavailable.udIn this study, artificial neural network (ANN) was used to address the unreliable laboratory data and unavailable correlation for environmentally friendly oil based drilling mud such as jatropha and canola oil. The new artificial neural network model was developed for predicting the down hole mud density of diesel, jatropha and canola oil based drilling mud using 30 data sets. 60% of the data were used for training the network, 20% for testing, and another 20% for validation.udThe test results revealed that the back propagation neural network model (BPNN) showed perfect agreement with the experimental results in term of average absolute relative error returned.
机译:由于增加了反对在环境中沉积油基泥浆的环保法规,钻井公司提出了一种最佳的钻井泥浆,例如芳烃含量很少或没有的植物油基泥浆,其废物可生物降解。最佳泥浆具有与基于柴油的钻井液相同的功能,并且同样符合HSE(健康,安全和环境)标准。确定实验室中的井下泥浆性质(如密度)或使用可用的相关性(大多数时间)是很方便的。 ud在本研究中,人工神经网络(ANN)用于解决不可靠的实验室数据和与环境无关的石油基麻疯树油和芥花籽油的相关性。开发了新的人工神经网络模型,用于使用30个数据集预测柴油,麻风树和低芥酸菜子油基钻井泥浆的井下泥浆密度。 60%的数据用于训练网络,20%的数据用于测试,另外20%的数据用于验证。 ud测试结果表明,反向传播神经网络模型(BPNN)在平均值方面与实验结果完全吻合返回绝对相对错误。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号